Меню Рубрики

Бронхиальная астма и креатинин

Связь между ожирением и бронхиальной астмой обсуждается представителями разных специальностей. Оба процесса являются хроническими, сложными и многофакторными по своей природе. В статье дан обзор и анализ основных публикаций с позиций доказательной медицин

Relationship between obesity and asthma discussed by various specialties. Both diseases are chronic, complex and multifactorial. In the article provides an overview and analysis of the major publications from the standpoint of evidence-based medicine.

Часть 2. Начало статьи читайте в № 4, 2014 год

Анализ генетических основ различных заболеваний является наиболее стремительно развивающимся направлением современной науки.

Существенные успехи в расшифровке генетических маркеров стали возможными благодаря осуществлению проекта «Геном человека», в ходе выполнения которого была расшифрована нуклеотидная последовательность всех хромосом человека, его геном, то есть совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Генетическая характеристика вида в целом, эта энциклопедия жизни, записанная четырьмя буквами, оказалась гораздо сложнее, чем ожидали ученые. При реализации проекта «Геном человека», наиболее известного из многих международных геномных проектов, нацеленных на секвенирование ДНК конкретного организма, предполагалось получить важную информацию для понимания механизмов развития болезней. Однако работа над интерпретацией данных генома находится все еще в своей начальной стадии [34]. Поскольку астма рассматривается как иммуноопосредованное заболевание, приведем в качестве примера некоторые данные о генетическом контроле работы иммунной системы. Общее число генов, ответственных за иммунитет, составляет почти 6% от всего генома. Большая часть этих генов располагается на 6-й хромосоме. Иммунитет человека управляется 2190 генами. 2190 генов состоят из 166 миллионов нуклеотидных пар. Из 2190 генов 633 являются неактивными, то есть кодируемые ими белки никогда не синтезируются в клетках иммунной системы. Из оставшихся 1557 генов на данный момент изучены функции примерно половины, причем известно, что дефекты 130 генов могут провоцировать развитие нарушений иммунитета.

Что касается БА, то на сегодняшний день детально изучено несколько десятков генов, определяющих течение болезни и фенотипы БА, среди которых можно назвать «главные» гены, гены-«модификаторы» и гены-«кандидаты». Учитывая сложность патогенеза астмы, предполагают, что число генов-кандидатов заболевания достаточно велико [35–37] и среди них можно выделить несколько групп таких генов:

  1. Гены факторов антигенного распознавания и гуморального иммунного ответа. К ним относят прежде всего гены цитокинов (интерлейкины, интерфероны, факторы некроза опухолей и т. д.), а также гены рецепторов Т- и В-клеток и гены главного комплекса гистосовместимости.
  2. Гены факторов воспаления, среди которых, видимо, большую важность для астмы имеют гены собственно медиаторов воспаления белковой природы (например, некоторые протеазы) и ферментов их метаболизма, а также гены хемокинов и молекул межклеточной адгезии.
  3. Гены рецепторов цитокинов и агентов воспаления, чьи белковые продукты осуществляют фиксацию внешних молекул-лигандов на клетках-мишенях.
  4. Гены внутриклеточных сигнальных молекул. Это гены большой и гетерогенной группы белков, объединяемых в несколько семейств, которые осуществляют и контролируют трансдукцию сигнала лиганда на «чувствительные» генные локусы. К этой группе, видимо, можно отнести и факторы транскрипции, которые активируются при участии данных посредников.
  5. Другие гены, функционально имеющие отношение к БА, которые невозможно однозначно отнести ни к одной из указанных групп. В их числе можно рассматривать, например, исследуемые отечественными учеными гены биотрансформации ксенобиотиков, в частности, NAT2, CYP1A, GSTT1, GSTM1.

Идентификация кандидатных и других генов, полногеномный поиск генов с анализом сцепления БА с большим набором высокоинформативных генетических маркеров позволили выявить сцепление БА с локусами 5q31.1-33, 6p12-21.2, 11q12-13, 12q14-24.1, 13q12-22, 14q11-12, 16p12.1-11.2 и Xq28/Yq12. Именно здесь расположены наиболее важные гены заболевания, контролирующие ключевые звенья его патогенеза. Хромосома 5q23-34 содержит гены для β2-адренергических рецепторов и гены рецепторов ГКС, ответственных за тонус дыхательных путей, активность симпатической нервной системы и в последующем за модуляцию воспаления как при астме, так и при ожирении. С локусом 5q31.1-33 связаны гены-кандидаты, контролирующие интерлейкин ИЛ-3, ИЛ-4, ИЛ-5; 5q35 — лейкотриен С4-синтетазу; 6р21.3-23 — главный комплекс гистосовместимости 2-го класса и фактор некроза опухоли альфа (ФНО-α); 10q11.2 — липоксигеназу; 12q24.3 — NO синтетазу-1; 11q12-13 — СС16 (СС10, утероглобин), противовоспалительный белок легких.

Центральным компонентом изучения БА, важным для развития персонализированной медицины, являются фармакогенетические исследования, которые продемонстрировали, что высокая степень гетерогенности ответа пациентов с астмой на фармакотерапию бронходилататорами, ингаляционными ГКС, антилейкотриеновыми (АЛТ) препаратами обусловлена генетической изменчивостью.

Кроме того, геномный скрининг установил еще около 10–15 хромосомных участков, сцепленных с БА. Это данные свидетельствуют о том, что в развитие астматического синдрома включено множество различных генов, каждый из которых способен вносить небольшой вклад в общую генетическую базу заболевания. Показано также, что количество, а также соотносительная важность генов и эффектов окружающей среды или генов-модификаторов в развитии БА варьирует в зависимости от этнического фона. Эти различия могут лежать в основе межпопуляционной вариабельности заболеваемости астмой. Наконец, получила подтверждение идея о различных молекулярных основах БА и атопии: как правило, локусы, сцепленные с БА per se или бронхиальной гиперреактивностью, не проявляли сцепления с уровнем IgE и наличием специфической сенсибилизации по данным кожного тестирования.

Полногеномный поиск генов подверженности к БА проведен также у мышей, имеющих фенотипически сходные с астмой признаки: воспаление дыхательных путей, инфильтрацию эозинофилов и неспецифическую бронхиальную гиперреактивность [38].

В результате было установлено сцепление «астмы» с пятью генными локусами, причем четыре из них соответствуют гомологичным хромосомным областям, где локализованы гены-кандидаты заболевания у человека: 5q31, 6p21, 12q22-24, 17q12-22.

Перечень генов, связанных с ожирением, насчитывает около 300 вариантов [39–41]. Результаты, опубликованные в биологическом научном журнале Nature Genetics, представляют итоги исследования GIANT (Генетическое исследование антропометрических показателей). Специалистами проанализировано 2,8 миллиона вариантов генов, в результате пересмотрены роли ранее известных «генов ожирения» и обнаружены четыре гена, вариации которых связаны с ростом, а также семь ранее неизвестных генов, отвечающих за повышенную массу тела [42, 43].

Безусловный интерес вызывают гены, кодирующие инсулино-подобный фактор роста 1 (insulin-like growth factor 1 — IGF 1), выявленные гены ADAM 33 на хромосоме 20р13, DENND1 B на хромосоме 1q31 [44, 45].

Ассоциации ИМТ и астмы на генетическом уровне изучались многими исследователями, но ни одна из этих ковариаций не была значительной (после коррекции для многократного тестирования), никакой преобладающей ассоциации не обнаружено. Это объясняет гетерогенность патологических процессов и требует изучения других звеньев патогенеза, которые влияют на характер течения астмы, определяют или модифицируют подходы к диагностике и лечению и связаны с функционированием жировой ткани.

Жировая ткань обладает эндо-, ауто- и паракринной функциями, здесь вырабатываются различные адипокины с про- и противовоспалительным эффектом: лептин, интерлейкин-6, свободные жирные кислоты; протеин, стимулирующий ацетилирование; ингибитор активатора плазминогена-1 (ИАП-1); трансформирующий ростовой фактор В; ангиотензиноген и др. Жировая ткань содержит важные регуляторы липопротеинового метаболизма: ЛПЛ (липопротеиновую липазу), ГЧЛ (гормоночувствительную липазу), протеин, переносящий эфиры холестерина.

Баланс между противовоспалительными (адипонектин) и провоспалительными (лептин, резистин) адипокинами играет важную роль в ассоциативной связи ожирения и астмы [46].

Лептин, пептидный гормон, регулирующий энергетический обмен (его нередко называют «гормоном голода») в физиологических условиях регулирует потребление энергии и ее расходование. Первоначально описанный как «гормон антитучности», лептин в настоящее время рассматривается как регулятор основного обмена, кроветворения, термогенеза, репродукции, ангиогенеза. Несмотря на то, что лептин действует в качестве гормона, способствующего снижению массы тела, у людей и животных, страдающих ожирением, его концентрация в крови резко повышена, а инъекции экзогенного лептина не дают никакого клинического эффекта. Вероятно, в этом случае наблюдается нарушение каких-либо других компонентов сигнального пути данного гормона, а организм безуспешно пытается компенсировать это, повышая уровень секреции собственного лептина. Как цитокин, лептин обеспечивает тимический гомеостаз и может влиять на секрецию цитокинов острой фазы, таких как ИЛ-1 и ФНО-α. Лептин связан со статусом питания и провоспалительным Th1-иммунным ответом. Снижение концентрации лептина в плазме во время лишения пищи приводит к нарушению иммунной функции. Подобно другим провоспалительным цитокинам лептин, способствуя дифференциации Th1-клеток, может модулировать начало и прогрессирование аутоиммунных реакций [47].

Современные концепции предполагают, что в ходе развития ожирения гипертрофия жировой ткани приводит к местной тканевой гипоксии, фокальному некрозу адипоцитов и, как следствие этого процесса, к усилению рекрутирования макрофагов через активацию толл-подобных рецепторов (TLR). В результате активации макрофагов повышается секреция ФНО-α, ИЛ-1, ИЛ-6, активируются молекулы адгезии, фагоцитоз, оксидативный стресс. Лептин влияет на воспаление путем усиления синтеза и высвобождения лейкотриенов из альвеолярных макрофагов и лимфоцитов [48, 49]. Такую гипотезу подтверждают результаты исследований, где было продемонстрировано, что лептин in vitro и in vivo регулирует систему интерлейкинов [50]. Примечательно, что в детстве уровень лептина выше у мальчиков, чем у девочек, что может объяснять превалирование астмы у мальчиков, а уровень лептина среди взрослых выше у женщин, чем у мужчин, как и уровень заболеваемости БА.

Специфическая роль лептина в развитии астмы между тем еще далека от разрешения. Роль и место активации других клеток, изменения процессов сигнальных путей, поляризации Т-клеток и активации Th2-ответа, роль трансформирующего фактора роста TGF-β, эотаксина продолжают изучаться [18, 46].

Другие цитокины жировой ткани также участвуют в патогенезе различных воспалительных реакций при ожирении и астме. CXCL5 — цитокин, который производится жировыми клетками в ответ на ФНО, вырабатываемый резидентными макрофагами, и может вызвать несколько связанных с ожирением осложнений, таких как астма, атеросклероз, заболевания кишечника, колиты, сахарный диабет и ретинопатии [51, 52].

Результаты исследований последних лет свидетельствуют о важной роли хронического воспаления жировой ткани, которое рассматривается как следствие и причина ожирения и связанных с ним многочисленных заболеваний. Это воспаление характеризуется клеточной инфильтрацией, фиброзом, изменениями микроциркуляции, сдвигом секреции адипокинов и нарушениями метаболизма жировой ткани, повышением в крови уровня таких неспецифических маркеров воспаления, как С-реактивный белок, фибриноген, выдыхаемый оксид азота (FeNO), лейкоциты, коррелирующих с выраженностью процесса [53].

При воспалении жировой ткани, как и при других воспалительных процессах, развивается фиброз. Адипоциты и преадипоциты под влиянием активированных макрофагов продуцируют компоненты экстрацеллюлярного матрикса, локализующиеся в виде аморфной зоны вокруг адипоцитов и свидетельствующие о повреждении жировой ткани. Примечательно, что снижение веса в результате хирургического лечения больных с ожирением приводило к уменьшению системных параметров воспаления и инфильтрации жировой ткани макрофагами, но не снижало степень фиброза. Подобная ирреверсибельность (необратимость) фиброза в определенной степени объясняет безуспешность терапии ожирения у части больных, несмотря на адекватность проводимого лечения [54, 55].

Как в развитии астмы, так и ожирения принимают участие тучные клетки, которые являются одновременно источником и мишенью для адипоцитокинов. Под действием сигнализационных молекул при метаболическом синдроме наблюдается изменение секреции ИЛ-9, ИЛ-33, стрессорных молекул, включая кортикотропин-высвобождающий гормон (CRH) и нейротензин (NT). В свою очередь, CRH и NT оказывают синергетический эффект на секрецию тучными клетками сосудистого эндотелиального фактора роста (VEGF). ИЛ-33 усиливает высвобождение VEGF, индуцированное субстанцией Р (SP), и высвобождение ФНО, индуцированное нейротензином. Как ИЛ-9, так и ИЛ-33 способствуют инфильтрации легких тучными клетками и увеличивают аллергическое воспаление, малочувствительное к ГКС и бронходилататорам. Эти молекулы, экспрессированные на тучных клетках человека, оказывают аутокринный эффект [56].

Патогенетическое значение воспаления жировой ткани для развития бронхиальной астмы имеют медиаторы воспаления, продуцируемые жировой тканью, которые, с одной стороны, могут модулировать иммунные реакции в легких; с другой стороны, хроническое устойчивое, хотя и невысокое по интенсивности, воспаление в жировой ткани влияет

на готовность дыхательных путей к развитию обструкции. Ожирение приводит к снижению эластичности легких, падению легочных объемов и уменьшению калибра дистальных дыхательных путей, а также гиперреактивности бронхов, изменению легочного кровотока, вентиляционно-перфузионному несоответствию, формированию хронической обструкции дыхательных путей из-за нарушения тонуса и сокращения гладких мышц. Это становится важным механизмом усугубляющего воздействия ожирения на течение астмы и тяжесть ее проявлений [57–59].

Идентификация фенотипов БА с помощью кластерного анализа, проведенная в нескольких исследованиях за последнее время, позволяет выделить фенотип тяжелой БА, которая характеризуется поздним началом, большей распространенностью среди женщин, страдающих ожирением и имеющих неэозинофильное воспаление дыхательных путей [60–63].

Механизм неэозинофильного воспаления до конца не ясен, но считают, что нейтрофильный тип воспаления дыхательных путей при БА ассоциирован с повышением уровней ИЛ-8, нейтрофильной эластазы и высокомолекулярной формы матриксной металлопротеиназы-9. Последнее свидетельствует о снижении активности тканевых ингибиторов матриксных металлопротеиназ [64].

В то же время развитие ожирения связано с огромным количеством различных изменений в структуре жировой ткани, включающих не только адипогенез, ангиогенез, но и протеолиз внеклеточного матрикса [65].

Активация этих энзимов может модифицировать структуру дыхательных путей и обусловливать прогрессивное снижение функции легких. В любом случае нейтрофильное воспаление при БА связано со значительным ослаблением ответа на терапию противоастматическими препаратами, что характерно для фенотипа астмы с ожирением.

Эти данные определенно свидетельствуют о наличии постоянных трудностей, возникающих при лечении таких больных. Очевидно, что в данном случае речь идет о существенно меньшей степени контроля астмы препаратами базисной терапии, в том числе и из группы ингаляционных глюкокортикостероидов (ИГКС). Это может быть связано как с недостаточностью применяемой дозы, так и с возможным развитием толерантности к данной группе препаратов на молекулярно-клеточном уровне. Кроме того, сама терапия высокими дозами ГКС (прежде всего системная) может приводить к девиации воспаления в сторону преобладания нейтрофильного типа, т. к. ГКС способны тормозить апоптоз нейтрофилов, что было показано в исследовании in vitro [66, 67]. В настоящее время не определен маркер нейтрофильного воспаления при БА, который мог бы служить критерием эффективности терапии.

Более высокая частота обострений течения астмы у больных с ожирением также неизбежно приводит к увеличению применения бронхолитических препаратов из групп бета-агонистов, холинолитиков или их комбинации в качестве средств неотложной помощи. Регулярное использование данных препаратов с частотой более двух раз в сутки также свидетельствует о недостаточном контроле астмы и, кроме того, сопряжено с развитием ряда неблагоприятных побочных эффектов. Для пациентов старших возрастных групп, к которым преимущественно и относятся больные астмой с ожирением, побочные эффекты бронхолитиков на сердечно-сосудистую систему могут оказаться достаточно серьезным препятствием к их повседневному применению или даже стать источником дополнительных сопутствующих заболеваний. Кроме того, сам факт зависимости пациента от препаратов неотложной помощи существенно снижает качество его жизни даже вне зависимости от возможных побочных эффектов такой терапии [68].

Авторы [68] провели post-hoc (лат. — «после этого», ретроспективный) анализ, обобщив данные по четырем двойным слепым плацебо-контролируемым исследованиям, в котором прошли рандомизацию 3073 взрослых пациента со среднетяжелой астмой, получавшие монтелукаст (n = 1439), беклометазон (n = 894) или плацебо (n = 740). Первичной конечной точкой было определение числа дней контролируемой астмы; другими конечными точками были показатели ОФВ1, потребность в бета-агонистах и частота ночных пробуждений. Анализы проводились с использованием классификации ИМТ как нормальное значение ( с мониторингом программ лечения.

  1. Lavie P. Who was the first to use the term Pickwickian in connection with sleepy patients? History of sleep apnoea syndrome // Sleep Med Rev. 2008; 12 (1): 5–17.
  2. Osler W. Principles and Practice of Medicine. 6 th ed. London: S >(часть 7). Немедикаментозное лечение // Проблемы эндокринологии. 2012, 2, с. 62–70.
  3. Sismanopoulos N. et. al. Do mast cells link obesity and asthma? // Allergy. 2013; 68 (1): 8–15.
  4. Цибулькина В. Н., Цибулькин Н. А. Бронхиальная астма и ожирение: совпадение или закономерность? // Практическая медицина. 2011, ноябрь.
  5. Beuther D. A., Weiss S. T., Sutherland E. R. Obesity and asthma // Am J Respir Crit Care Med. 2006; 174: 112–119.
  6. Fredberg J. J. Airway obstruction in asthma: does the response to a deep inspiration matter? // Respir Res. 2001; 2: 273–275.
  7. Wenzel S. Asthma: defining of the persistent adult phenotypes // Lancet. 2006; 368: 804–813.
  8. Haldar P., Pavord I., Shaw D. et al. Cluster analysis and clinical asthma phenotypes // Am J Respir Crit Care Med. 2008; 178: 218–224.
  9. Moore W. C., Meyers D. A., Wenzel S. E. et al. >27 (3): 495–503.
  10. Giouleka P., Papatheodorou G., Lyberopoulos P. // Eur J Clin Invest. 2010; 41 (1): 30–38.
  11. Camargo C. A. et al. Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast // J Asthma. 2010; 47 (1): 76–82.
  12. Anderson W. J., Lipworth B. J. Does body mass index influence responsiveness to inhaled corticostero >108 (4): 237–242.
  13. Kattan M. et al. Asthma Control, Adiposity and Adipokines among Inner-City Adolescents // J Allergy Clin Immunol. 2010; 125 (3): 584–592.
  14. Hakala K., Stenius-Aarniala B., Sovijarvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma // Chest. 2000; 118: 1315–1321.
  15. Stenius-Aarniala B., Poussa T., Kvarnstrom J., Gronlund E. L., Ylikahri M., Mustajoki P. Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study // BMJ. 2000; 320: 827–832.
  16. Reddy R. C. et al. The effects of bariatric surgery on asthma severity // Obes Surg. 2011; 21 (2): 200–206.
  17. Moreira A., Bonini M., Garcia-Larsen V., Bonini S., Del Giacco S. R., Agache I., Fonseca J., Papadopoulos N. G., Carlsen K.-H., Delgado L., Haahtela T. Weight loss interventions in asthma: EAACI Evidence-Based Clinical Practice Guideline (Part I) // Allergy. 2013; 68: 425–443.
  18. The GRADE working group. Grading quality of evidence and strength of recommendations // BMJ. 2004; 328: 1490–1494.
  19. Guyatt G. H. et al. GRADE guidelines: 12. Preparing summary of findings tables — binary outcomes // J Clin Epidemiol. 2012. May 18.
Читайте также:  Как лечить бронхиальную астму без гормонов

Н. Г. Астафьева 1 , доктор медицинских наук, профессор
И. В. Гамова, кандидат медицинских наук
Е. Н. Удовиченко, кандидат медицинских наук
И. А. Перфилова, кандидат медицинских наук

ГБОУ ВПО СГМУ им. В. И. Разумовского МЗ РФ, Саратов

источник

Бронхиальная астма – диагноз клинический, то есть врач ставит его на основании прежде всего жалоб, истории заболевания и данных осмотра и внешнего исследования (пальпации, перкуссии, аускультации). Однако дополнительные методы исследования дают ценную, а в некоторых случаях определяющую диагностическую информацию, поэтому они широко применяются на практике.

Диагностика бронхиальной астмы с помощью дополнительных методов включает проведение лабораторных анализов и инструментальных исследований.

Пациенту с астмой могут быть назначены следующие анализы:

  • общий анализ крови;
  • биохимический анализ крови;
  • общий анализ мокроты;
  • анализ крови для выявления общего IgE;
  • кожные пробы;
  • определение в крови аллергенспецифических IgE;
  • пульсоксиметрия;
  • анализ крови на газы и кислотность;
  • определение оксида азота в выдыхаемом воздухе.

Разумеется, не все эти тесты выполняются у каждого больного. Некоторые из них рекомендуются лишь при тяжелом состоянии, другие – при выявлении значимого аллергена и так далее.

Общий анализ крови выполняется у всех пациентов. При бронхиальной астме, как и при любом другом аллергическом заболевании, в крови отмечается увеличение количества эозинофилов (EOS) более 5% от общего количества лейкоцитов. Эозинофилия в периферической крови может возникать не только при астме. Однако определение этого показателя в динамике (повторно) помогает оценить интенсивность аллергической реакции, определить начало обострения, эффективность лечения. В крови может определяться незначительный лейкоцитоз и увеличение скорости оседания эритроцитов, однако это необязательные признаки.

Биохимический анализ крови у больного с астмой часто никаких отклонений не выявляет. У некоторых пациентов отмечается увеличение уровня α2- и γ-глобулинов, серомукоида, сиаловых кислот, то есть неспецифических признаков воспаления.

Обязательно проводится анализ мокроты. В ней находят большое количество эозинофилов – клеток, участвующих в аллергической реакции. В норме их меньше 2% от всех обнаруженных клеток. Чувствительность этого признака высокая, то есть он обнаруживается у большинства больных с астмой, а специфичность средняя, то есть, помимо астмы, эозинофилы в мокроте встречаются и при других заболеваниях.

В мокроте нередко определяются спирали Куршмана – извитые трубочки, образующиеся из бронхиальной слизи при спазме бронхов. В них вкраплены кристаллы Шарко-Лейдена – образования, которые состоят из белка, образующегося при распаде эозинофилов. Таким образом, два этих признака говорят о снижении бронхиальной проходимости, вызванном аллергической реакцией, что часто и наблюдается при астме.

Кроме того, в мокроте оценивается наличие атипичных клеток, характерных для рака, и микобактерий туберкулеза.

Анализ крови на общий IgE показывает уровень в крови этого иммуноглобулина, который вырабатывается в ходе аллергической реакции. Он может быть повышен при многих аллергических заболеваниях, но и нормальное его количество не исключает бронхиальную астму и другие атопические процессы. Поэтому гораздо более информативным является определение в крови специфических IgE – антител к конкретным аллергенам.

Для анализа на специфические IgE используются так называемые панели – наборы аллергенов, с которыми реагирует кровь больного. Тот образец, в котором содержание иммуноглобулина будет выше нормы (у взрослых это 100 ед/мл), и покажет причинно-значимый аллерген. Используются панели шерсти и эпителия разных животных, бытовые, грибковые, пыльцевые аллергены, в некоторых случаях – аллергены лекарств и пищевые.

Для выявления аллергенов применяются и кожные пробы. Их можно проводить у детей любого возраста и у взрослых, они не менее информативны, чем определение IgE в крови. Кожные пробы хорошо себя зарекомендовали в диагностике профессиональной астмы. Однако при этом существует риск внезапной тяжелой аллергической реакции (анафилаксии). Результаты проб могут меняться под действием антигистаминных препаратов. Их нельзя проводить при кожной аллергии (атопическом дерматите, экземе).

Пульсоксиметрия – исследование, проводимое с помощью небольшого прибора – пульсоксиметра, который обычно надевается на палец пациента. Он определяет насыщение артериальной крови кислородом (SpO2). При снижении этого показателя менее 92% следует выполнить исследование газового состава и кислотности (рН) крови. Снижение уровня насыщения крови кислородом свидетельствует о тяжелой дыхательной недостаточности и угрозе для жизни больного. Определяемое при исследовании газового состава снижение парциального давления кислорода и увеличение парциального давления углекислого газа свидетельствует о необходимости искусственной вентиляции легких.

Наконец, определение оксида азота в выдыхаемом воздухе (FENO) у многих больных с астмой выявляет увеличение этого показателя выше нормы (25 ppb). Чем сильнее воспаление в дыхательных путях и больше доза аллергена, тем показатель выше. Однако такая же ситуация бывает и при других болезнях легких.

Таким образом, специальные лабораторные методы диагностики астмы – кожные пробы с аллергенами и определение в крови уровня специфических IgE.

Методы функциональной диагностики бронхиальной астмы включают:

  • исследование вентиляционной функции легких, то есть способности этого органа доставлять необходимое количество воздуха для газообмена;
  • определение обратимости бронхиальной обструкции, то есть снижения проходимости бронхов;
  • выявление гиперреактивности бронхов, то есть их склонности к спазму под действием вдыхаемых раздражителей.

Основной метод исследования при бронхиальной астме – спирометрия, или измерение дыхательных объемов и скоростей воздушных потоков. С него обычно начинается диагностический поиск еще до начала лечения больного.

Главный анализируемый показатель – ОФВ1, то есть объем форсированного выдоха за секунду. Проще говоря, это количество воздуха, которое человек способен быстро выдохнуть в течение 1 секунды. При спазме бронхов воздух выходит из дыхательных путей медленнее, чем у здорового человека, показатель ОФВ1 снижается.

Если при первичной диагностике уровень ОФВ1 составляет 80% и больше от нормальных показателей, это говорит о легком течении астмы. Показатель, равный 60 – 80% от нормы, появляется при астме средней тяжести, менее 60% – при тяжелом течении. Все эти данные применимы только к ситуации первичной диагностики до начала терапии. В дальнейшем они отражают не тяжесть астмы, а уровень ее контроля. У людей с контролируемой астмой показатели спирометрии в пределах нормы.

Таким образом, нормальные показатели функции внешнего дыхания не исключают диагноз «бронхиальная астма». С другой стороны, снижение бронхиальной проходимости обнаруживается, например, при хронической обструктивной болезни легких (ХОБЛ).

Если обнаружено снижение бронхиальной проходимости, то важно выяснить, насколько оно обратимо. Временный характер бронхоспазма – важное отличие астмы от того же хронического бронхита и ХОБЛ.

Итак, при снижении ОФВ1 для выявления обратимости бронхиальной обструкции проводятся фармакологические тесты. Пациенту дают препарат посредством дозированного аэрозольного ингалятора, чаще всего 400 мкг сальбутамола, и через определенное время снова проводят спирометрию. Если показатель ОФВ1 увеличился после использования бронхолитика на 12% и больше (в абсолютных цифрах на 200 мл и больше), говорят о положительной пробе с бронходилататором. Это означает, что сальбутамол эффективно снимает спазм бронхов у данного пациента, то есть бронхиальная обструкция у него непостоянна. Если показатель ОФВ1 увеличивается менее чем на 12%, это признак необратимого сужения бронхиального просвета, а если он уменьшается, это говорит о парадоксальном спазме бронхов в ответ на использование ингалятора.

Прирост ОФВ1 после ингаляции сальбутамола на 400 мл и больше дает практически полную уверенность в диагнозе «бронхиальная астма». В сомнительных случаях может быть назначена пробная терапия ингаляционными глюкокортикоидами (беклометазон по 200 мкг 2 раза в день) в течение 2 месяцев или даже таблетками преднизолона (30 мг/сут) в течение 2 недель. Если показатели бронхиальной проходимости после этого улучшаются – это говорит в пользу диагноза «бронхиальная астма».

В некоторых случаях даже при нормальных показателях ОФВ1 применение сальбутамола сопровождается приростом его величины на 12% и больше. Это говорит о скрытой бронхиальной обструкции.

В других случаях нормальной величины ОФВ1 для подтверждения гиперреактивности бронхов применяют ингаляционную пробу с метахолином. Если она будет отрицательной, это может служить причиной для исключения диагноза астмы. Во время исследования пациент вдыхает возрастающие дозы вещества, и определяется минимальная концентрация, которая вызывает снижение ОФВ1 на 20%.

Применяются и другие пробы для выявления гиперреактивности бронхов, например, с маннитолом или физической нагрузкой. Падение ОФВ1 в результате использования этих проб на 15% и более с высокой степенью достоверности указывает на бронхиальную астму. Проба с физической нагрузкой (бег в течение 5 – 7 минут) широко применяется для диагностики астмы у детей. Применение ингаляционных провокационных проб у них ограничено.

Еще один важнейший метод инструментальной диагностики астмы и контроля за ее лечением – пикфлоуметрия. Пикфлоуметр должен быть у каждого пациента с этим заболеванием, ведь самоконтроль – основа эффективной терапии. С помощью этого небольшого аппарата определяют пиковую скорость выдоха (ПСВ) – максимальную скорость, с которой пациент может выдохнуть воздух. Этот показатель, так же как и ОФВ1, прямо отражает бронхиальную проходимость.

ПСВ можно определять у больных начиная с 5-летнего возраста. При определении ПСВ делается три попытки, записывается лучший показатель. Измеряют величину показателя утром и вечером каждого дня, а также оценивают его вариабельность – разницу между минимальным и максимальным значениями, полученными в течение дня, выраженную в процентах от максимальной величины за день и усредненную за 2 недели регулярных наблюдений. Для людей с бронхиальной астмой характерна повышенная вариабельность показателей ПСВ – более 20% при четырех измерениях в течение дня.

Показатель ПСВ используется преимущественно у людей с уже установленным диагнозом. Он помогает держать астму под контролем. В течение наблюдений определяют максимальный лучший показатель для данного больного. Если отмечается снижение до 50 – 75% от наилучшего результата – это говорит о развивающемся обострении и необходимости усилить интенсивность лечения. При снижении ПСВ до 33 – 50% от лучшего для пациента результата диагностируют тяжелое обострение, а при более значительном уменьшении показателя возникает угроза жизни больного.

Определяемый дважды в день показатель ПСВ нужно записывать в дневник, который приносят на каждый прием к врачу.

В некоторых случаях проводятся дополнительные инструментальные обследования. Рентгенография легких выполняется в таких ситуациях:

  • наличие эмфиземы легких или пневмоторакса;
  • вероятность воспаления легких;
  • обострение, несущее угрозу жизни больного;
  • неэффективность лечения;
  • необходимость искусственной вентиляции легких;
  • неясный диагноз.

У детей младше 5 лет используется компьютерная бронхофонография – метод исследования, основанный на оценке дыхательных шумов, и позволяющий выявить снижение бронхиальной проходимости.

При необходимости дифференциальной диагностики с другими заболеваниями выполняют бронхоскопию (осмотр бронхиального дерева с помощью эндоскопа при подозрении на рак бронхов, инородное тело дыхательных путей) и компьютерную томографию органов грудной клетки.

О том, как проводится исследование функции внешнего дыхания:

источник

Креатинин — конечный продукт метаболизма креатинфосфата — вещества, участвующего в механизмах быстрого обеспечения энергетических потребностей мышечного сокра­щения.

Креатинин образуется в мышцах результате неферментативного отщепления фосфат­ной группы от креатинфосфата, а также спонтанного превращения креатина в креатинин. Он продуцируется и поступает в кровь с постоянной скоростью, поэтому концентрация креатинина в сыворотке крови относительно стабильна и в норме определяется преиму­щественно общим объемом мышечной массы человека. У мужчин содержание креатини­на несколько выше по сравнению с женщинами, что связано с относительно большей мышечной массой. Уровень креатинина сыворотки крови зависит от возраста (референсные значения для детей существенно ниже). Концентрация креатинина крови физиоло­гически снижена у беременных женщин (на 40%) вследствие увеличения объема крови, повышения почечного плазмотока и фильтрации, и соответствующего роста клиренса креатинина, особенно во II и III триместрах беременности.

Креатинин выводится из крови почками. Он относится к так называемым «беспорого­вым» веществам: в норме креатинин свободно фильтруется в почечных клубочках и да­лее, не подвергаясь обратному всасыванию или дополнительной секреции в канальцах, полностью выводится с мочой из организма. Поэтому увеличение концентрации креати­нина в сыворотке крови говорит об уменьшении уровня почечной фильтрации (снижении функции почек). Зная концентрацию креатинина сыворотки крови и количество выделен­ного с мочой креатинина за определенный промежуток времени, можно рассчитать объ­ем плазмы крови, фильтрующейся в почечных клубочках в единицу времени (расчет объ­ема клубочковой фильтрации по клиренсу эндогенного креатинина, или проба Реберга).

Следует отметить, что образование эндогенного креатинина в пожилом возрасте нес­колько уменьшается, и у пожилых пациентов степень тяжести болезни почек может ока­заться выше, чем та, на которую указывает концентрация креатинина в сыворотке крови.

Вследствие высоких резервных возможностей почечной гемодинамики, креатинин не является чувствительным показателем заболеваний почек в ранней стадии и может ос­таваться на постоянном уровне при поражении значительной части нефронов. Поэтому этот тест обычно используют одновременно с определением мочевины тест №1.2.3), кон­центрация которой более чувствительна к функциональным изменениям состояния по­чек. В то же время, на уровень креатинина сыворотки в меньшей степени, чем на уро­вень мочевины, оказывает влияние характер пищи. Небольшое увеличение содержания креатинина в крови может вызвать повышенное поступление экзогенного креатина и кре­атинина с мясной пищей.

Содержание креатинина в крови закономерно повышается при почечной недостаточности, что имеет большое значение для ее диагностики. Следует отметить, что увеличение уровня креатинина и мочевины при ОПН – довольно поздние ее признаки. Повышение выявляется, когда поражено более 50% нефронов. При тяжелом нарушении функции почек содержание в крови креатинина может достигать очень высоких цифр – 800-900 мкмоль/л, а в отдельных случаях до 2650 мкмоль/л и выше. При неосложненных случаях ОПН концентрация креатинина в крови возрастает в сутки на 44-88 мкмоль/л, в случаях ОПН, сопровождающейся поражением мышц (обширнаятравма), уровень креатинина в крови возрастает более заметно в результате значительного увеличения скорости его образования. Уровни креатинина в крови и клубочковой фильтрации приняты как основные лабораторные критерии в классификации хронической почечной недостаточности (ХПН).

Читайте также:  Влажный воздух при бронхиальной астме

Следует помнить, что такие заболевания, как гипертиреоз, резко выраженные нарушения функций печени, недостаточность деятельности сердечно-сосудистой системы, воспалительные заболевания легких, лихорадочные состояния, закупорка мочевых путе й, акромегалия, гигантизм , сахарный диабет, кишечная непроходимость, мышечная дистрофия, обширные ожоги, также могут сопровождаться повышением уровня креатинина в крови.

источник

Связь между ожирением и бронхиальной астмой обсуждается представителями разных специальностей. Оба процесса являются хроническими, сложными и многофакторными по своей природе. В статье дан обзор и анализ основных публикаций с позиций доказательной медицин

Relationship between obesity and asthma discussed by various specialties. Both diseases are chronic, complex and multifactorial. In the article provides an overview and analysis of the major publications from the standpoint of evidence-based medicine.

Часть 2. Начало статьи читайте в № 4, 2014 год

Анализ генетических основ различных заболеваний является наиболее стремительно развивающимся направлением современной науки.

Существенные успехи в расшифровке генетических маркеров стали возможными благодаря осуществлению проекта «Геном человека», в ходе выполнения которого была расшифрована нуклеотидная последовательность всех хромосом человека, его геном, то есть совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Генетическая характеристика вида в целом, эта энциклопедия жизни, записанная четырьмя буквами, оказалась гораздо сложнее, чем ожидали ученые. При реализации проекта «Геном человека», наиболее известного из многих международных геномных проектов, нацеленных на секвенирование ДНК конкретного организма, предполагалось получить важную информацию для понимания механизмов развития болезней. Однако работа над интерпретацией данных генома находится все еще в своей начальной стадии [34]. Поскольку астма рассматривается как иммуноопосредованное заболевание, приведем в качестве примера некоторые данные о генетическом контроле работы иммунной системы. Общее число генов, ответственных за иммунитет, составляет почти 6% от всего генома. Большая часть этих генов располагается на 6-й хромосоме. Иммунитет человека управляется 2190 генами. 2190 генов состоят из 166 миллионов нуклеотидных пар. Из 2190 генов 633 являются неактивными, то есть кодируемые ими белки никогда не синтезируются в клетках иммунной системы. Из оставшихся 1557 генов на данный момент изучены функции примерно половины, причем известно, что дефекты 130 генов могут провоцировать развитие нарушений иммунитета.

Что касается БА, то на сегодняшний день детально изучено несколько десятков генов, определяющих течение болезни и фенотипы БА, среди которых можно назвать «главные» гены, гены-«модификаторы» и гены-«кандидаты». Учитывая сложность патогенеза астмы, предполагают, что число генов-кандидатов заболевания достаточно велико [35–37] и среди них можно выделить несколько групп таких генов:

  1. Гены факторов антигенного распознавания и гуморального иммунного ответа. К ним относят прежде всего гены цитокинов (интерлейкины, интерфероны, факторы некроза опухолей и т. д.), а также гены рецепторов Т- и В-клеток и гены главного комплекса гистосовместимости.
  2. Гены факторов воспаления, среди которых, видимо, большую важность для астмы имеют гены собственно медиаторов воспаления белковой природы (например, некоторые протеазы) и ферментов их метаболизма, а также гены хемокинов и молекул межклеточной адгезии.
  3. Гены рецепторов цитокинов и агентов воспаления, чьи белковые продукты осуществляют фиксацию внешних молекул-лигандов на клетках-мишенях.
  4. Гены внутриклеточных сигнальных молекул. Это гены большой и гетерогенной группы белков, объединяемых в несколько семейств, которые осуществляют и контролируют трансдукцию сигнала лиганда на «чувствительные» генные локусы. К этой группе, видимо, можно отнести и факторы транскрипции, которые активируются при участии данных посредников.
  5. Другие гены, функционально имеющие отношение к БА, которые невозможно однозначно отнести ни к одной из указанных групп. В их числе можно рассматривать, например, исследуемые отечественными учеными гены биотрансформации ксенобиотиков, в частности, NAT2, CYP1A, GSTT1, GSTM1.

Идентификация кандидатных и других генов, полногеномный поиск генов с анализом сцепления БА с большим набором высокоинформативных генетических маркеров позволили выявить сцепление БА с локусами 5q31.1-33, 6p12-21.2, 11q12-13, 12q14-24.1, 13q12-22, 14q11-12, 16p12.1-11.2 и Xq28/Yq12. Именно здесь расположены наиболее важные гены заболевания, контролирующие ключевые звенья его патогенеза. Хромосома 5q23-34 содержит гены для β2-адренергических рецепторов и гены рецепторов ГКС, ответственных за тонус дыхательных путей, активность симпатической нервной системы и в последующем за модуляцию воспаления как при астме, так и при ожирении. С локусом 5q31.1-33 связаны гены-кандидаты, контролирующие интерлейкин ИЛ-3, ИЛ-4, ИЛ-5; 5q35 — лейкотриен С4-синтетазу; 6р21.3-23 — главный комплекс гистосовместимости 2-го класса и фактор некроза опухоли альфа (ФНО-α); 10q11.2 — липоксигеназу; 12q24.3 — NO синтетазу-1; 11q12-13 — СС16 (СС10, утероглобин), противовоспалительный белок легких.

Центральным компонентом изучения БА, важным для развития персонализированной медицины, являются фармакогенетические исследования, которые продемонстрировали, что высокая степень гетерогенности ответа пациентов с астмой на фармакотерапию бронходилататорами, ингаляционными ГКС, антилейкотриеновыми (АЛТ) препаратами обусловлена генетической изменчивостью.

Кроме того, геномный скрининг установил еще около 10–15 хромосомных участков, сцепленных с БА. Это данные свидетельствуют о том, что в развитие астматического синдрома включено множество различных генов, каждый из которых способен вносить небольшой вклад в общую генетическую базу заболевания. Показано также, что количество, а также соотносительная важность генов и эффектов окружающей среды или генов-модификаторов в развитии БА варьирует в зависимости от этнического фона. Эти различия могут лежать в основе межпопуляционной вариабельности заболеваемости астмой. Наконец, получила подтверждение идея о различных молекулярных основах БА и атопии: как правило, локусы, сцепленные с БА per se или бронхиальной гиперреактивностью, не проявляли сцепления с уровнем IgE и наличием специфической сенсибилизации по данным кожного тестирования.

Полногеномный поиск генов подверженности к БА проведен также у мышей, имеющих фенотипически сходные с астмой признаки: воспаление дыхательных путей, инфильтрацию эозинофилов и неспецифическую бронхиальную гиперреактивность [38].

В результате было установлено сцепление «астмы» с пятью генными локусами, причем четыре из них соответствуют гомологичным хромосомным областям, где локализованы гены-кандидаты заболевания у человека: 5q31, 6p21, 12q22-24, 17q12-22.

Перечень генов, связанных с ожирением, насчитывает около 300 вариантов [39–41]. Результаты, опубликованные в биологическом научном журнале Nature Genetics, представляют итоги исследования GIANT (Генетическое исследование антропометрических показателей). Специалистами проанализировано 2,8 миллиона вариантов генов, в результате пересмотрены роли ранее известных «генов ожирения» и обнаружены четыре гена, вариации которых связаны с ростом, а также семь ранее неизвестных генов, отвечающих за повышенную массу тела [42, 43].

Безусловный интерес вызывают гены, кодирующие инсулино-подобный фактор роста 1 (insulin-like growth factor 1 — IGF 1), выявленные гены ADAM 33 на хромосоме 20р13, DENND1 B на хромосоме 1q31 [44, 45].

Ассоциации ИМТ и астмы на генетическом уровне изучались многими исследователями, но ни одна из этих ковариаций не была значительной (после коррекции для многократного тестирования), никакой преобладающей ассоциации не обнаружено. Это объясняет гетерогенность патологических процессов и требует изучения других звеньев патогенеза, которые влияют на характер течения астмы, определяют или модифицируют подходы к диагностике и лечению и связаны с функционированием жировой ткани.

Жировая ткань обладает эндо-, ауто- и паракринной функциями, здесь вырабатываются различные адипокины с про- и противовоспалительным эффектом: лептин, интерлейкин-6, свободные жирные кислоты; протеин, стимулирующий ацетилирование; ингибитор активатора плазминогена-1 (ИАП-1); трансформирующий ростовой фактор В; ангиотензиноген и др. Жировая ткань содержит важные регуляторы липопротеинового метаболизма: ЛПЛ (липопротеиновую липазу), ГЧЛ (гормоночувствительную липазу), протеин, переносящий эфиры холестерина.

Баланс между противовоспалительными (адипонектин) и провоспалительными (лептин, резистин) адипокинами играет важную роль в ассоциативной связи ожирения и астмы [46].

Лептин, пептидный гормон, регулирующий энергетический обмен (его нередко называют «гормоном голода») в физиологических условиях регулирует потребление энергии и ее расходование. Первоначально описанный как «гормон антитучности», лептин в настоящее время рассматривается как регулятор основного обмена, кроветворения, термогенеза, репродукции, ангиогенеза. Несмотря на то, что лептин действует в качестве гормона, способствующего снижению массы тела, у людей и животных, страдающих ожирением, его концентрация в крови резко повышена, а инъекции экзогенного лептина не дают никакого клинического эффекта. Вероятно, в этом случае наблюдается нарушение каких-либо других компонентов сигнального пути данного гормона, а организм безуспешно пытается компенсировать это, повышая уровень секреции собственного лептина. Как цитокин, лептин обеспечивает тимический гомеостаз и может влиять на секрецию цитокинов острой фазы, таких как ИЛ-1 и ФНО-α. Лептин связан со статусом питания и провоспалительным Th1-иммунным ответом. Снижение концентрации лептина в плазме во время лишения пищи приводит к нарушению иммунной функции. Подобно другим провоспалительным цитокинам лептин, способствуя дифференциации Th1-клеток, может модулировать начало и прогрессирование аутоиммунных реакций [47].

Современные концепции предполагают, что в ходе развития ожирения гипертрофия жировой ткани приводит к местной тканевой гипоксии, фокальному некрозу адипоцитов и, как следствие этого процесса, к усилению рекрутирования макрофагов через активацию толл-подобных рецепторов (TLR). В результате активации макрофагов повышается секреция ФНО-α, ИЛ-1, ИЛ-6, активируются молекулы адгезии, фагоцитоз, оксидативный стресс. Лептин влияет на воспаление путем усиления синтеза и высвобождения лейкотриенов из альвеолярных макрофагов и лимфоцитов [48, 49]. Такую гипотезу подтверждают результаты исследований, где было продемонстрировано, что лептин in vitro и in vivo регулирует систему интерлейкинов [50]. Примечательно, что в детстве уровень лептина выше у мальчиков, чем у девочек, что может объяснять превалирование астмы у мальчиков, а уровень лептина среди взрослых выше у женщин, чем у мужчин, как и уровень заболеваемости БА.

Специфическая роль лептина в развитии астмы между тем еще далека от разрешения. Роль и место активации других клеток, изменения процессов сигнальных путей, поляризации Т-клеток и активации Th2-ответа, роль трансформирующего фактора роста TGF-β, эотаксина продолжают изучаться [18, 46].

Другие цитокины жировой ткани также участвуют в патогенезе различных воспалительных реакций при ожирении и астме. CXCL5 — цитокин, который производится жировыми клетками в ответ на ФНО, вырабатываемый резидентными макрофагами, и может вызвать несколько связанных с ожирением осложнений, таких как астма, атеросклероз, заболевания кишечника, колиты, сахарный диабет и ретинопатии [51, 52].

Результаты исследований последних лет свидетельствуют о важной роли хронического воспаления жировой ткани, которое рассматривается как следствие и причина ожирения и связанных с ним многочисленных заболеваний. Это воспаление характеризуется клеточной инфильтрацией, фиброзом, изменениями микроциркуляции, сдвигом секреции адипокинов и нарушениями метаболизма жировой ткани, повышением в крови уровня таких неспецифических маркеров воспаления, как С-реактивный белок, фибриноген, выдыхаемый оксид азота (FeNO), лейкоциты, коррелирующих с выраженностью процесса [53].

При воспалении жировой ткани, как и при других воспалительных процессах, развивается фиброз. Адипоциты и преадипоциты под влиянием активированных макрофагов продуцируют компоненты экстрацеллюлярного матрикса, локализующиеся в виде аморфной зоны вокруг адипоцитов и свидетельствующие о повреждении жировой ткани. Примечательно, что снижение веса в результате хирургического лечения больных с ожирением приводило к уменьшению системных параметров воспаления и инфильтрации жировой ткани макрофагами, но не снижало степень фиброза. Подобная ирреверсибельность (необратимость) фиброза в определенной степени объясняет безуспешность терапии ожирения у части больных, несмотря на адекватность проводимого лечения [54, 55].

Как в развитии астмы, так и ожирения принимают участие тучные клетки, которые являются одновременно источником и мишенью для адипоцитокинов. Под действием сигнализационных молекул при метаболическом синдроме наблюдается изменение секреции ИЛ-9, ИЛ-33, стрессорных молекул, включая кортикотропин-высвобождающий гормон (CRH) и нейротензин (NT). В свою очередь, CRH и NT оказывают синергетический эффект на секрецию тучными клетками сосудистого эндотелиального фактора роста (VEGF). ИЛ-33 усиливает высвобождение VEGF, индуцированное субстанцией Р (SP), и высвобождение ФНО, индуцированное нейротензином. Как ИЛ-9, так и ИЛ-33 способствуют инфильтрации легких тучными клетками и увеличивают аллергическое воспаление, малочувствительное к ГКС и бронходилататорам. Эти молекулы, экспрессированные на тучных клетках человека, оказывают аутокринный эффект [56].

Патогенетическое значение воспаления жировой ткани для развития бронхиальной астмы имеют медиаторы воспаления, продуцируемые жировой тканью, которые, с одной стороны, могут модулировать иммунные реакции в легких; с другой стороны, хроническое устойчивое, хотя и невысокое по интенсивности, воспаление в жировой ткани влияет

на готовность дыхательных путей к развитию обструкции. Ожирение приводит к снижению эластичности легких, падению легочных объемов и уменьшению калибра дистальных дыхательных путей, а также гиперреактивности бронхов, изменению легочного кровотока, вентиляционно-перфузионному несоответствию, формированию хронической обструкции дыхательных путей из-за нарушения тонуса и сокращения гладких мышц. Это становится важным механизмом усугубляющего воздействия ожирения на течение астмы и тяжесть ее проявлений [57–59].

Идентификация фенотипов БА с помощью кластерного анализа, проведенная в нескольких исследованиях за последнее время, позволяет выделить фенотип тяжелой БА, которая характеризуется поздним началом, большей распространенностью среди женщин, страдающих ожирением и имеющих неэозинофильное воспаление дыхательных путей [60–63].

Механизм неэозинофильного воспаления до конца не ясен, но считают, что нейтрофильный тип воспаления дыхательных путей при БА ассоциирован с повышением уровней ИЛ-8, нейтрофильной эластазы и высокомолекулярной формы матриксной металлопротеиназы-9. Последнее свидетельствует о снижении активности тканевых ингибиторов матриксных металлопротеиназ [64].

В то же время развитие ожирения связано с огромным количеством различных изменений в структуре жировой ткани, включающих не только адипогенез, ангиогенез, но и протеолиз внеклеточного матрикса [65].

Активация этих энзимов может модифицировать структуру дыхательных путей и обусловливать прогрессивное снижение функции легких. В любом случае нейтрофильное воспаление при БА связано со значительным ослаблением ответа на терапию противоастматическими препаратами, что характерно для фенотипа астмы с ожирением.

Эти данные определенно свидетельствуют о наличии постоянных трудностей, возникающих при лечении таких больных. Очевидно, что в данном случае речь идет о существенно меньшей степени контроля астмы препаратами базисной терапии, в том числе и из группы ингаляционных глюкокортикостероидов (ИГКС). Это может быть связано как с недостаточностью применяемой дозы, так и с возможным развитием толерантности к данной группе препаратов на молекулярно-клеточном уровне. Кроме того, сама терапия высокими дозами ГКС (прежде всего системная) может приводить к девиации воспаления в сторону преобладания нейтрофильного типа, т. к. ГКС способны тормозить апоптоз нейтрофилов, что было показано в исследовании in vitro [66, 67]. В настоящее время не определен маркер нейтрофильного воспаления при БА, который мог бы служить критерием эффективности терапии.

Более высокая частота обострений течения астмы у больных с ожирением также неизбежно приводит к увеличению применения бронхолитических препаратов из групп бета-агонистов, холинолитиков или их комбинации в качестве средств неотложной помощи. Регулярное использование данных препаратов с частотой более двух раз в сутки также свидетельствует о недостаточном контроле астмы и, кроме того, сопряжено с развитием ряда неблагоприятных побочных эффектов. Для пациентов старших возрастных групп, к которым преимущественно и относятся больные астмой с ожирением, побочные эффекты бронхолитиков на сердечно-сосудистую систему могут оказаться достаточно серьезным препятствием к их повседневному применению или даже стать источником дополнительных сопутствующих заболеваний. Кроме того, сам факт зависимости пациента от препаратов неотложной помощи существенно снижает качество его жизни даже вне зависимости от возможных побочных эффектов такой терапии [68].

Читайте также:  Ингалятор быстрого действия при астме

Авторы [68] провели post-hoc (лат. — «после этого», ретроспективный) анализ, обобщив данные по четырем двойным слепым плацебо-контролируемым исследованиям, в котором прошли рандомизацию 3073 взрослых пациента со среднетяжелой астмой, получавшие монтелукаст (n = 1439), беклометазон (n = 894) или плацебо (n = 740). Первичной конечной точкой было определение числа дней контролируемой астмы; другими конечными точками были показатели ОФВ1, потребность в бета-агонистах и частота ночных пробуждений. Анализы проводились с использованием классификации ИМТ как нормальное значение ( с мониторингом программ лечения.

  1. Lavie P. Who was the first to use the term Pickwickian in connection with sleepy patients? History of sleep apnoea syndrome // Sleep Med Rev. 2008; 12 (1): 5–17.
  2. Osler W. Principles and Practice of Medicine. 6 th ed. London: S >(часть 7). Немедикаментозное лечение // Проблемы эндокринологии. 2012, 2, с. 62–70.
  3. Sismanopoulos N. et. al. Do mast cells link obesity and asthma? // Allergy. 2013; 68 (1): 8–15.
  4. Цибулькина В. Н., Цибулькин Н. А. Бронхиальная астма и ожирение: совпадение или закономерность? // Практическая медицина. 2011, ноябрь.
  5. Beuther D. A., Weiss S. T., Sutherland E. R. Obesity and asthma // Am J Respir Crit Care Med. 2006; 174: 112–119.
  6. Fredberg J. J. Airway obstruction in asthma: does the response to a deep inspiration matter? // Respir Res. 2001; 2: 273–275.
  7. Wenzel S. Asthma: defining of the persistent adult phenotypes // Lancet. 2006; 368: 804–813.
  8. Haldar P., Pavord I., Shaw D. et al. Cluster analysis and clinical asthma phenotypes // Am J Respir Crit Care Med. 2008; 178: 218–224.
  9. Moore W. C., Meyers D. A., Wenzel S. E. et al. >27 (3): 495–503.
  10. Giouleka P., Papatheodorou G., Lyberopoulos P. // Eur J Clin Invest. 2010; 41 (1): 30–38.
  11. Camargo C. A. et al. Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast // J Asthma. 2010; 47 (1): 76–82.
  12. Anderson W. J., Lipworth B. J. Does body mass index influence responsiveness to inhaled corticostero >108 (4): 237–242.
  13. Kattan M. et al. Asthma Control, Adiposity and Adipokines among Inner-City Adolescents // J Allergy Clin Immunol. 2010; 125 (3): 584–592.
  14. Hakala K., Stenius-Aarniala B., Sovijarvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma // Chest. 2000; 118: 1315–1321.
  15. Stenius-Aarniala B., Poussa T., Kvarnstrom J., Gronlund E. L., Ylikahri M., Mustajoki P. Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study // BMJ. 2000; 320: 827–832.
  16. Reddy R. C. et al. The effects of bariatric surgery on asthma severity // Obes Surg. 2011; 21 (2): 200–206.
  17. Moreira A., Bonini M., Garcia-Larsen V., Bonini S., Del Giacco S. R., Agache I., Fonseca J., Papadopoulos N. G., Carlsen K.-H., Delgado L., Haahtela T. Weight loss interventions in asthma: EAACI Evidence-Based Clinical Practice Guideline (Part I) // Allergy. 2013; 68: 425–443.
  18. The GRADE working group. Grading quality of evidence and strength of recommendations // BMJ. 2004; 328: 1490–1494.
  19. Guyatt G. H. et al. GRADE guidelines: 12. Preparing summary of findings tables — binary outcomes // J Clin Epidemiol. 2012. May 18.

Н. Г. Астафьева 1 , доктор медицинских наук, профессор
И. В. Гамова, кандидат медицинских наук
Е. Н. Удовиченко, кандидат медицинских наук
И. А. Перфилова, кандидат медицинских наук

ГБОУ ВПО СГМУ им. В. И. Разумовского МЗ РФ, Саратов

источник

Бронхиальная астма – это хроническое неинфекционное заболевание дыхательных путей воспалительного характера. Приступ бронхиальной астмы часто развивается после предвестников и характеризуется коротким резким вдохом и шумным длительным выдохом. Обычно он сопровождается кашлем с вязкой мокротой и громкими свистящими хрипами. Методы диагностики включают оценку данных спирометрии, пикфлоуметрии, аллергопроб, клинических и иммунологических анализов крови. В лечении используются аэрозольные бета-адреномиметики, м-холинолитики, АСИТ, при тяжелых формах заболевания применяются глюкокортикостероиды.

За последние два десятка лет заболеваемость бронхиальной астмой (БА) выросла, и на сегодняшний день в мире около 300 миллионов астматиков. Это одно из самых распространенных хронических заболеваний, которому подверженные все люди, вне зависимости от пола и возраста. Смертность среди больных бронхиальной астмой достаточно высока. Тот факт, что в последние двадцать лет заболеваемость бронхиальной астмой у детей постоянно растет, делает бронхиальную астму не просто болезнью, а социальной проблемой, на борьбу с которой направляется максимум сил. Несмотря на сложность, бронхиальная астма хорошо поддается лечению, благодаря которому можно добиться стойкой и длительной ремиссии. Постоянный контроль над своим состоянием позволяет пациентам полностью предотвратить наступление приступов удушья, снизить или исключить прием препаратов для купирования приступов, а так же вести активный образ жизни. Это помогает поддержать функции легких и полностью исключить риск осложнений.

Наиболее опасными провоцирующими факторами для развития бронхиальной астмы являются экзогенные аллергены, лабораторные тесты на которые подтверждают высокий уровень чувствительности у больных БА и у лиц, которые входят в группу риска. Самыми распространенными аллергенами являются бытовые аллергены – это домашняя и книжная пыль, корм для аквариумных рыбок и перхоть животных, аллергены растительного происхождения и пищевые аллергены, которые еще называют нутритивными. У 20-40% больных бронхиальной астмой выявляется сходная реакция на лекарственные препараты, а у 2% болезнь получена вследствие работы на вредном производстве или же, например, в парфюмерных магазинах.

Инфекционные факторы тоже являются важным звеном в этиопатогенезе бронхиальной астмы, так как микроорганизмы, продукты их жизнедеятельности могут выступать в качестве аллергенов, вызывая сенсибилизацию организма. Кроме того, постоянный контакт с инфекцией поддерживает воспалительный процесс бронхиального дерева в активной фазе, что повышает чувствительность организма к экзогенным аллергенам. Так называемые гаптенные аллергены, то есть аллергены небелковой структуры, попадая в организм человека и связываясь его белками так же провоцируют аллергические приступы и увеличивают вероятность возникновения БА. Такие факторы, как переохлаждение, отягощенная наследственность и стрессовые состояния тоже занимают одно из важных мест в этиологии бронхиальной астмы.

Хронические воспалительные процессы в органах дыхания ведут к их гиперактивности, в результате которой при контакте с аллергенами или раздражителями, мгновенно развивается обструкция бронхов, что ограничивает скорость потока воздуха и вызывает удушье. Приступы удушья наблюдаются с разной периодичностью, но даже в стадии ремиссии воспалительный процесс в дыхательных путях сохраняется. В основе нарушения проходимости потока воздуха, при бронхиальной астме лежат следующие компоненты: обструкция дыхательных путей из-за спазмов гладкой мускулатуры бронхов или вследствие отека их слизистой оболочки; закупорка бронхов секретом подслизистых желез дыхательных путей из-за их гиперфункции; замещение мышечной ткани бронхов на соединительную при длительном течении заболевания, из-за чего возникают склеротические изменения в стенке бронхов.

В основе изменений бронхов лежит сенсибилизация организма, когда при аллергических реакциях немедленного типа, протекающих в виде анафилаксий, вырабатываются антитела, а при повторной встрече с аллергеном происходит мгновенное высвобождение гистамина, что и приводит к отеку слизистой бронхов и к гиперсекреции желез. Иммунокомплексные аллергические реакции и реакции замедленной чувствительности протекают аналогично, но с менее выраженными симптомами. Повышенное количество ионов кальция в крови человека в последнее время тоже рассматривается как предрасполагающий фактор, так как избыток кальция может провоцировать спазмы, в том числе и спазмы мускулатуры бронхов.

При патологоанатомическом исследовании умерших во время приступа удушья отмечается полная или частичная закупорка бронхов вязкой густой слизью и эмфизематозное расширение легких из-за затрудненного выдоха. Микроскопия тканей чаще всего имеет сходную картину – это утолщенный мышечный слой, гипертрофированные бронхиальные железы, инфильтративные стенки бронхов с десквамацией эпителия.

БА подразделяется по этиологии, тяжести течения, уровню контроля и другим параметрам. По происхождению выделяют аллергическую (в т. ч. профессиональную БА), неаллергическую (в т. ч. аспириновую БА), неуточненную, смешанную бронхиальную астму. По степени тяжести различают следующие формы БА:

  1. Интермиттирующая (эпизодическая). Симптомы возникают реже одного раза в неделю, обострения редкие и короткие.
  2. Персистирующая (постоянного течения). Делится на 3 степени:
  • легкая — симптомы возникают от 1 раза в неделю до 1 раза в месяц
  • средняя — частота приступов ежедневная
  • тяжелая — симптомы сохраняются практически постоянно.

В течении астмы выделяют обострения и ремиссию (нестабильную или стабильную). По возможности контроля над пристпуами БА может быть контролируемой, частично контролируемой и неконтролируемой. Полный диагноз пациента с бронхиальной астмой включает в себя все вышеперечисленные характеристики. Например, «Бронхиальная астма неаллергического происхождения, интермиттирующая, контролируемая, в стадии стабильной ремиссии».

Приступ удушья при бронхиальной астме делится на три периода: период предвестников, период разгара и период обратного развития. Период предвестников наиболее выражен у пациентов с инфекционно-аллергической природой БА, он проявляется вазомоторными реакциями со стороны органов носоглотки (обильные водянистые выделения, непрекращающееся чихание). Второй период (он может начаться внезапно) характеризуется ощущением стесненности в грудной клетке, которое не позволяет дышать свободно. Вдох становится резким и коротким, а выдох наоборот продолжительным и шумным. Дыхание сопровождается громкими свистящими хрипами, появляется кашель с вязкой, трудно отхаркиваемой мокротой, что делает дыхание аритмичным.

Во время приступа положение пациента вынужденное, обычно он старается принять сидячее положение с наклоненным вперед корпусом, и найти точку опоры или опирается локтями в колени. Лицо становится одутловатым, а во время выдоха шейные вены набухают. В зависимости от тяжести приступа можно наблюдать участие мышц, которые помогают преодолеть сопротивление на выдохе. В периоде обратного развития начинается постепенное отхождение мокроты, количество хрипов уменьшается, и приступ удушья постепенно угасает.

Проявления, при которых можно заподозрить наличие бронхиальной астмы.

  • высокотональные свистящие хрипы при выдохе, особенно у детей.
  • повторяющиеся эпизоды свистящих хрипов, затрудненного дыхания, чувства стеснения в грудной клетке и кашель, усиливающийся в ночной время.
  • сезонность ухудшений самочувствия со стороны органов дыхания
  • наличие экземы, аллергических заболеваний в анамнезе.
  • ухудшение или возникновение симптоматики при контакте с аллергенами, приеме препаратов, при контакте с дымом, при резких изменениях температуры окружающей среды, ОРЗ, физических нагрузках и эмоциональных напряжениях.
  • частые простудные заболевания «спускающиеся» в нижние отделы дыхательных путей.
  • улучшение состояние после приема антигистаминных и противоастматических препаратов.

В зависимости от тяжести и интенсивности приступов удушья бронхиальная астма может осложняться эмфиземой легких и последующим присоединением вторичной сердечно-легочной недостаточности. Передозировка бета-адреностимуляторов или быстрое снижение дозировки глюкокортикостероидов, а так же контакт с массивной дозой аллергена могут привести к возникновению астматического статуса, когда приступы удушья идут один за другим и их практически невозможно купировать. Астматический статус может закончиться летальным исходом.

Диагноз обычно ставится клиницистом-пульмонологом на основании жалоб и наличия характерной симптоматики. Все остальные методы исследования направлены на установление степени тяжести и этиологии заболевания. При перкуссии звук ясный коробочный из-за гипервоздушности легких, подвижность легких резко ограничена, а их границы смещены вниз. При аускультации над легкими прослушивается везикулярное дыхание, ослабленное с удлиненным выдохом и с большим количеством сухих свистящих хрипов. Из-за увеличения легких в объеме, точка абсолютной тупости сердца уменьшается, тоны сердца приглушенные с акцентом второго тона над легочной артерией. Из инструментальных исследований проводится:

  • Спирометрия. Спирография помогает оценить степень обструкции бронхов, выяснить вариабельность и обратимость обструкции, а так же подтвердить диагноз. При БА форсированный выдох после ингаляции бронхолитиком за 1 секунду увеличивается на 12% (200мл) и более. Но для получения более точной информации спирометрию следует проводить несколько раз.
  • Пикфлоуметрия. Измерение пиковой активности выдоха (ПСВ) позволяет проводить мониторинг состояния пациента, сравнивая показатели с полученными ранее. Увеличение ПСВ после ингаляции бронхолитика на 20% и более от ПСВ до ингаляции четко свидетельствует о наличии бронхиальной астмы.

Дополнительная диагностика включает в себя проведение тестов с аллергенами, ЭКГ, бронхоскопию и рентгенографию легких. Лабораторные исследования крови имеют большое значение в подтверждении аллергической природы бронхиальной астмы, а так же для мониторинга эффективности лечения.

  • Анализа крови. Изменения в ОАК — эозинофилия и незначительное повышение СОЭ — определяются только в период обострения. Оценка газового состава крови необходима во время приступа для оценки тяжести ДН. Биохимический анализ крови не является основным методом диагностики, так как изменения носят общий характер и подобные исследования назначаются для мониторинга состояния пациента в период обострения.
  • Общий анализ мокроты. При микроскопии в мокроте можно обнаружить большое количество эозинофилов, кристаллы Шарко-Лейдена (блестящие прозрачные кристаллы, образующиеся после разрушения эозинофилов и имеющие форму ромбов или октаэдров), спирали Куршмана (образуются из-за мелких спастических сокращений бронхов и выглядят как слепки прозрачной слизи в форме спиралей). Нейтральные лейкоциты можно обнаружить у пациентов с инфекционно-зависимой бронхиальной астмой в стадии активного воспалительного процесса. Так же отмечено выделение телец Креола во время приступа – это округлые образования, состоящие из эпителиальных клеток.
  • Исследование иммунного статуса. При бронхиальной астме количество и активность Т-супрессоров резко снижается, а количество иммуноглобулинов в крови увеличивается. Использование тестов для определения количества иммуноглобулинов Е важно в том случае, если нет возможности провести аллергологические тесты.

Поскольку бронхиальная астма является хроническим заболеванием вне зависимости от частоты приступов, то основополагающим моментом в терапии является исключение контакта с возможными аллергенами, соблюдение элиминационных диет и рациональное трудоустройство. Если же удается выявить аллерген, то специфическая гипосенсибилизирующая терапия помогает снизить реакцию организма на него.

Для купирования приступов удушья применяют бета-адреномиметики в форме аэрозоля, для того чтобы быстро увеличить просвет бронхов и улучшить отток мокроты. Это фенотерола гидробромид, сальбутамол, орципреналин. Доза в каждом случае подбирается индивидуально. Так же хорошо купируют приступы препараты группы м-холинолитиков – аэрозоли ипратропия бромида и его комбинации с фенотеролом.

Ксантиновые производные пользуются среди больных бронхиальной астмой большой популярностью. Они назначаются для предотвращения приступов удушья в виде таблетированных форм пролонгированного действия. В последние несколько лет препараты, которые препятствуют дегрануляции тучных клеток, дают положительный эффект при лечении бронхиальной астмы. Это кетотифен, кромогликат натрия и антагонисты ионов кальция.

При лечении тяжелых форм БА подключают гормональную терапию, в глюкокортикостероидах нуждается почти четверть пациентов, 15-20 мг Преднизолона принимают в утренние часы вместе с антацидными препаратами, которые защищают слизистую желудка. В условиях стационара гормональные препараты могут быть назначены в виде инъекций. Особенность лечения бронхиальной астмы в том, что нужно использовать лекарственные препараты в минимальной эффективной дозе и добиваться еще большего снижения дозировок. Для лучшего отхождения мокроты показаны отхаркивающие и муколитические препараты.

Течение бронхиальной астмы состоит из череды обострений и ремиссий, при своевременном выявлении можно добиться устойчивой и длительной ремиссии, прогноз же зависит в большей степени от того, насколько внимательно пациент относится к своему здоровью и соблюдает предписания врача. Большое значение имеет профилактика бронхиальной астмы, которая заключается в санации очагов хронической инфекции, борьбе с курением, а так же в минимизации контактов с аллергенами. Это особенно важно для людей, которые входят в группу риска или имеют отягощенную наследственность.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *