Меню Рубрики

Петля поток объем при бронхиальной астме

Спирография — метод графической регистрации изменений легочных объемов при выполнении естественных дыхательных движений и волевых форсированных дыхательных маневров. Спирография позволяет получить ряд показателей, которые описывают вентиляцию легких. В первую очередь, это статические объемы и емкости, которые характеризуют упругие свойства легких и грудной стенки, а также динамические показатели, которые определяют количество воздуха, вентилируемого через дыхательные пути во время вдоха и выдоха за единицу времени. Показатели определяют в режиме спокойного дыхания, а некоторые — при проведении форсированных дыхательных маневров.

В техническом выполнении все спирографы делятся на приборы открытого и закрытого типа .В аппаратах открытого типа больной через клапанную коробку вдыхает атмосферный воздух, а выдыхаемый воздух поступает в мешок Дугласа или в спирометр Тисо (емкостью 100—200 л), иногда — к газовому счетчику, который непрерывно определяет его объем. Собранный таким образом воздух анализируют: в нем определяют величины поглощения кислорода и выделения углекислого газа за единицу времени. В аппаратах закрытого типа используется воздух колокола аппарата, циркулирующий в закрытом контуре без сообщения с атмосферой. Выдыхаемый углекислый газ поглощается специальным поглотителем.

Показания к проведению спирографии следующие:

1.Определение типа и степени легочной недостаточности.

2.Мониторинг показателей легочной вентиляции в цельях определения степени и быстроты прогрессирования заболевания.

3.Оценка эффективности курсового лечения заболеваний с бронхиальной обструкцией бронходилататорами β2-агонистами короткого и пролонгированного действия, холинолитиками), ингаляционными ГКС и мембраностабилизирующими препаратами.

4.Проведение дифференциальной диагностики между легочной и сердечной недостаточностью в комплексе с другими методами исследования.

5.Выявление начальных признаков вентиляционной недостаточности у лиц, подверженных риску легочных заболеваний, или у лиц, работающих в условиях влияния вредных производственных факторов.

6.Экспертиза работоспособности и военная экспертиза на основе оценки функции легочной вентиляции в комплексе с клиническими показателями.

7.Проведение бронходилатационных тестов в целях выявления обратимости бронхиальной обструкции, а также провокационных ингаляционных тестов для выявления гиперреактивности бронхов.

Рис. 1. Схематическое изображение спирографа

Несмотря на широкое клиническое применение, спирография противопоказана при следующих заболеваниях и патологических состояниях:

тяжелое общее состояние больного, не дающее возможности провести исследование;

прогрессирующая стенокардия, инфаркт миокарда, острое нарушение мозгового кровообращения;

злокачественная артериальная гипертензия, гипертонический криз;

токсикозы беременности, вторая половина беременности;

недостаточность кровообращения III стадии;

тяжелая легочная недостаточность, не позволяющая провести дыхательные маневры.

Техника проведения спирографии. Исследование проводят утром натощак. Перед исследованием пациенту рекомендуется находиться в спокойном состоянии на протяжении 30 мин, а также прекратить прием бронхолитиков не позже чем за 12 часов до начала исследования. Спирографическая кривая и показатели легочной вентиляции приведены на рис. 2. Статические показатели определяют во время спокойного дыхания. Измеряют дыхательный объем (ДО) — средний объем воздуха, который больной вдыхает и выдыхает во время обычного дыхания в состоянии покоя. В норме он составляет 500—800 мл. Часть ДО, которая принимает участие в газообмене, называется альвеолярным объемом (АО) и в среднем равняется 2/3 величины ДО. Остаток (1/3 величины ДО) составляет объем функционального мертвого пространства (ФМП). После спокойного выдоха пациент максимально глубоко выдыхает — измеряется резервный объем выдоха (РОВыд), который в норме составляет IООО—1500 мл. После спокойного вдоха делается максимально глубокий вдох — измеряется резервный объем вдоха (РОвд). При анализе статических показателей рассчитывается емкость вдоха (Евд) — сумма ДО и РОвд, которая характеризует способность легочной ткани к растяжению, а также жизненная емкость легких (ЖЕЛ) — максимальный объем, который можно вдохнуть после максимально глубокого выдоха (сумма ДО, РОВД и РОвыд в норме составляет от 3000 до 5000 мл). После обычного спокойного дыхания проводится дыхательный маневр: делается максимально глубокий вдох, а затем — максимально глубокий, самый резкий и длительный (не менее 6 с) выдох. Так определяется форсированная жизненная емкость легких (ФЖЕЛ) — объем воздуха, который можно выдохнуть при форсированном выдохе после максимального вдоха (в норме составляет 70—80 % ЖЕЛ). Как заключительный этап исследования проводится запись максимальной вентиляции легких (МВЛ) — максимального объема воздуха, который может быть провентилирован легкими за I мин. МВЛ характеризует функциональную способность аппарата внешнего дыхания и в норме составляет 50—180 л. Снижение МВЛ наблюдается при уменьшении легочных объемов вследствие рестриктивных (ограничительных) и обструктивных нарушений легочной вентиляции.

Рис. 2. Спирографическая кривая и показатели легочной вентиляции

При анализе спирографической кривой, полученной в маневре с форсированным выдохом, измеряют определенные скоростные показатели (рис. 3): 1) объем форсированного выдоха за первую секунду (ОФВ1) — объем воздуха, который выдыхается за первую секунду при максимально быстром выдохе; он измеряется в мл и высчитывается в процентах к ФЖЕЛ; здоровые люди за первую секунду выдыхают не менее 70 % ФЖЕЛ; 2) проба или индекс Тиффно — соотношение ОФВ1 (мл)/ЖЕЛ (мл), умноженное на 100 %; в норме составляет не менее 70—75 %; 3) максимальная объемная скорость воздуха на уровне выдоха 75 % ФЖЕЛ (МОС75), оставшейся в легких; 4) максимальная объемная скорость воздуха на уровне выдоха 50 % ФЖЕЛ (МОС50), оставшейся в легких; 5) максимальная объемная скорость воздуха на уровне выдоха 25 % ФЖЕЛ (МОС25), оставшейся в легких; 6) средняя объемная скорость форсированного выдоха, вычисленная в интервале измерения от 25 до 75 % ФЖЕЛ (СОС25-75).

Рис. 3. Спирографическая кривая, полученная в маневре форсированного выдоха. Расчет показателей ОФВ1 и СОС25-75

Вычисление скоростных показателей имеет большое значение в выявлении признаков бронхиальной обструкции. Уменьшение индекса Тиффно и ОФВ1 является характерным признаком заболеваний, которые сопровождаются снижением бронхиальной проходимости — бронхиальной астмы, хронического обструктивного заболевания легких, бронхоэктатической болезни и пр. Показатели МОС имеют наибольшую ценность в диагностике начальных проявлений бронхиальной обструкции. СОС25-75 отображает состояние проходимости мелких бронхов и бронхиол. Последний показатель является более информативным, чем ОФВ1, для выявления ранних обструктивных нарушений.

Все показатели легочной вентиляции изменчивы. Они зависят от пола, возраста, веса, роста, положения тела, состояния нервной системы больного и прочих факторов. Поэтому для правильной оценки функционального состояния легочной вентиляции абсолютное значение того или иного показателя является недостаточным. Необходимо сопоставлять полученные абсолютные показатели с соответствующими величинами у здорового человека того же возраста, роста, веса и пола — так называемыми должными показателями. Такое сопоставление выражается в процентах по отношению к должному показателю. Патологическими считаются отклонения, превышающие 15—20 % от величины должного показателя.

СПИРОГРАФИЯ С РЕГИСТРАЦИЕЙ ПЕТЛИ «ПОТОК-ОБЪЁМ»

Спирография с регистрацией петли «поток-объем» — современный метод исследования легочной вентиляции, который заключается в определении объемной скорости движения потока воздуха вдыхательных путях и его графическом отображением в виде петли «поток—объем» при спокойном дыхании пациента и при выполнении им определенных дыхательных маневров. За рубежом этот метод называют спирометрией. Целью исследования является диагностика вида и степени нарушений легочной вентиляции на основании анализа количественных и качественных изменений спирографических показателей.

Показания и противопоказания к применению сприрометрии аналогичны таковым для классической спирографии.

Методика проведения. Исследование проводят в первой половине дня, независимо от приема еды. Пациенту предлагают закрыть оба носовых хода специальным зажимом, взять индивидуальную простерилизованную насадку-мундштук в рот и плотно обхватить ее губами. Пациент в положении сидя дышит через трубку по открытому контуру, практически не испытывая сопротивления дыханию Процедура выполнения дыхательных маневров с регистрацией кривой «поток—объем» форсированного дыхания идентична той, которая выполняется при записи ФЖЕЛ во время проведения классической спирографии. Больному надлежит объяснить, что в пробе с форсированным дыханием выдохнуть в прибор следует так, будто нужно погасить свечи на праздничном торте. После некоторого периода спокойного дыхания пациент делает максимально глубокий вдох, в результате чего регистрируется кривая эллиптической формы (кривая АЕВ). Затем больной делает максимально быстрый и интенсивный форсированный выдох. При этом регистрируется кривая характерной формы, которая у здоровых людей напоминает треугольник (рис. 4).

Рис. 4. Нормальная петля (кривая) соотношения объемной скорости потока и объема воздуха при проведении дыхательных маневров. Вдох начинается в точке А, выдох — в точке В. ПОСвыд регистрируется в точке С. Максимальный экспираторный поток в середине ФЖЕЛ соответствует точке D, максимальный инспираторный поток — точке Е

Максимальная экспираторная объемная скорость потока воздуха отображается начальной частью кривой (точка С, где регистрируется пиковая объемная скорость выдоха — ПОСВЫД)- После этого объемная скорость потока уменьшается (точка D, где регистрируется МОС50), и кривая возвращается к изначальной позиции (точка А). При этом кривая «поток—объем» описывает соотношение между объемной скоростью воздушного потока и легочным объемом (емкостью легких) во время дыхательных движений. Данные скоростей и объемов потока воздуха обрабатываются персональным компьютером благодаря адаптированному программному обеспечению. Кривая «поток—объем» при этом отображается на экране монитора и может быть распечатана на бумаге, сохранена на магнитном носителе или в памяти персонального компьютера. Современные аппараты работают со спирографическими датчиками в открытой системе с последующей интеграцией сигнала потока воздуха для получения синхронных значений объемов легких. Рассчитанные компьютером результаты исследования печатаются вместе с кривой «поток—объем» на бумаге в абсолютных значениях и в процентах к должным величинам. При этом на оси абсцисс откладывается ФЖЕЛ (объем воздуха), а на оси ординат — поток воздуха, измеряемый в литрах в секунду (л/с)

Рис. 5. Кривая «поток-объем» форсированного дыхания и показатели легочной вентиляции у здорового человека

Рис. 6 Схема спирограммы ФЖЕЛ и соответствующей кривой форсированного выдоха в координатах «поток-объем»: V — ось объема; V’ — ось потока

Петля «поток—объем» представляет собой первую производную классической спирограммы. Хотя кривая «поток—объем» содержит в основном ту же информацию, что и классическая спирограмма, наглядность соотношения между потоком и объемом позволяет более глубоко проникнуть в функциональные характеристики как верхних, так и нижних дыхательных путей (рис. 6). Расчет по классической спирограмме высокоинформативных показателей МОС25, МОС50, МОС75 имеет ряд технических трудностей при выполнении графических изображений. Поэтому его результаты не обладают высокой точностью В связи с этим лучше определять указанные показатели по кривой «поток—объем». Оценка изменений скоростных спирографических показателей осуществляется по степени их отклонения от должной величины. Как правило, за нижнюю границу нормы принимается значение показателя потока, что составляет 60 % от должного уровня

Пневмотахометрия – это метод скоростей воздушного потока при форсированном вдохе и выдохе.

Пневмотахометрия является важным методом при определении состояния бронхиальной проходимости. У здоровых лиц показатель тахометрии колеблется от 4 до 8 л/с. Должная величина определяется по формуле ЖЕЛ X 1,2. Снижение этого показателя ниже 85 % считается нарушением бронхиальной проходимости.

Для того чтобы выявить скрытые бронхоспазмы, необходимо вычислить отношение пневмотахометрии на вдохе и выдохе. Если показатель ниже 0,9 — то это ранний признак бронхоспастического состояния. Нормальная проходимость бронхов у мужчин мощность выдоха и вдоха составляет — 3,5–5,5 л/с, у женщин — 3–3,8 л/с.

Как правило, фактический пневмотахометрический показатель по себе не характеризует состояния бронхиальной проходимости, его необходимо сопоставлять с должными величинами.

Наиболее эффективным является применение пневмотахографии в целях определения клапанного механизма нарушений бронхиальной проходимости, так как позволяет регистрировать скорость воздушного потока более длительно, чем при пневмотахометрии.

Пневмотахография (греч. pneuma воздух + tachos скорость + graphō писать, изображать) — непрерывная регистрация объемной скорости потока вдыхаемого и выдыхаемого воздуха при спокойном и форсированном дыхании. Самостоятельно применяется редко, чаще в сочетании с определением объема вдоха и выдоха (кривые «поток — объем»), альвеолярного и транспульмонального давления. Наиболее часто в клинической практике используется регистрация кривой «поток — объем форсированного выдоха», документирующей скорость воздушного потока на различных этапах форсированного выдоха. При правильном выполнении обследуемым форсированного выдоха кривая «поток — объем» позволяет объективно оценить состояние бронхиальной проходимости, диагностировать бронхиальную обструкцию, в т.ч. ее начальные проявления, что дает возможность выявить бронхолегочные заболевания на доклинической стадии развития Существенную роль кривая «поток — объем форсированного выдоха» играет в распознавании бронхоспазма при проведении фармакологических проб с бронхолитиками, изучении реактивности бронхов методами специфической и неспецифической бронхопровокации, оценке функциональной эффективности лечения бронхолегочной патологии в стационаре и амбулаторных условиях, определении выраженности и уровня бронхиальной обструкции. Особенно велико значение кривой «поток — объем форсированного выдоха» в изучении неблагоприятного влияния курения, загрязнения окружающей среды и профессиональных вредностей на функцию легких.

Читайте также:  Препарат от астмы для беременных

источник

Спирометрия — это безопасный, доступный и высокоинформативный способ исследования вентиляционной функции легких. Такой метод диагностики позволяет не только обнаружить нарушения в работе дыхательной системы, но также определить их характер.


Спирометрия при бронхиальной астме помогает подтвердить наличие и степень бронхиальной обструкции.

Для осуществления такой процедуры необходим специальный медицинский прибор. Обычный механический спирограф представлен подвижным цилиндром, который погружен в сосуд с водой и связан с регистрирующим устройством. Когда пациент дышит в пустой цилиндр, его объем меняется — так регистрируется изменение легочного объема в процессе дыхания. Сегодня чаще прибегают к компьютерной спирометрии. Этот диагностический метод позволяет не только измерить основные спирометрические значения, но также определить дополнительные величины, чтобы составит более полную картину болезни и диагностировать патологию на ранних сроках.

Окружающая обстановка влияет на самочувствие пациента, а значит, и на результат исследования. Процедура проводится в изолированном, тихом, слабо освещенном помещении с температурой воздуха от 18 до 24 градусов и оптимальной влажностью. Процессу дыхания не должна мешать одежда (тугой воротник, галстук, ремень брюк, бюстгальтер). Крайне важно совершать дыхательные движения именно так, как просит врач.

Если необходимо получить результаты спирометрии при основном обмене, то необходимо соблюсти следующие правила:

  • прийти рано утром;
  • не есть перед исследованием;
  • в течение суток перед процедурой не принимать лекарства (по рекомендации врача).

За час до проведения процедуры желательно отдохнуть лежа. Если будет достаточно данных, при относительном покое, спирометрию проводят днем, через 2 – 3 часа после легкого приема пищи. Перед процедурой нужно посидеть 15 – 30 минут.

Спирометрия дает возможность измерить объемы легких при обычных и очень активных двигательных движениях. Пользуясь этими результатами, можно вычислить легочные емкости и другие показатели, размер которых меняется при бронхообструкции.

Объем легких имеет несколько составляющих.

  • дыхательный объем (ДО);
  • объем вдоха или выдоха резервный (РОвд или РОвыд);
  • объем легких остаточный (ООЛ).

Жизненная емкость легких (ЖЕЛ) — это одна из главнейших спирометрических величин. Для ее измерения после серий обычных вдохов и выдохов нужно дать самый сильный вдох и так же глубоко выдохнуть.

Емкость легких включает и другие значения:

  • емкость вдоха (Евд);
  • функциональная остаточная емкость (ФОЕ);
  • общая емкость легких (ОЕЛ).

В процессе исследования также определяют форсированную жизненную емкость легких (ФЖЕЛ). При бронхиальной астме эти данные особенно важны, поскольку они отражают силу бронхиальной обструкции. Чтобы определить ФЖЕЛ пациент должен глубоко вдохнуть, а затем быстро выдохнуть. Помимо этого форсированный тест позволяет определить следующие характеристики:

  • объем форсированного выдоха за секунду (ОФВД1);
  • индекс Тиффно;
  • максимальную объемную скорость выдоха на уровне 25%, 50% и 70% от ФЖЕЛ;
  • среднюю объемную скорость выдоха на уровне 25-75% от ФЖЕЛ;
  • пиковую объемную скорость выдоха (ПОСвы).

Прежде всего, оценивается общий вид спирограммы. Внешне она представляет собой кривую линию на миллиметровой бумаге, различные отрезки которой соответствуют тем или иным величинам. При каких-либо отклонениях график сильно изменяет свой вид. Современные приборы сами анализируют полученные результаты и выстраивают не только стандартную спирограмму, но также кривую «поток-объем». На графике она имеет каплевидную форму со скошенной правой стороной. В случае бронхиальной астмы эта часть петли перестает быть ровной и «провисает».

Интерпретация результатов позволяет следить за течением астмы, установить стадию заболевания, оценить, насколько эффективна проводимая терапия, и составить прогноз. Показатели легочных объемов и легочных емкостей могут значительно различаться у мужчин, женщин, детей и пожилых людей, пациентов с разными типами грудных клеток (нормастеническая, гиперстеническая и астеническая) и разным уровнем тренированности. Помимо этого на результат влияет атмосферное давление и положения тела. При бронхиальной обструкции на спирограмме наблюдаются следующие изменения:

  • снижение ЖЕЛ (часто говорит о тяжелом течении);
  • снижение РОвыд;
  • снижение ОФВД1;
  • уменьшение индекса Тиффно;
  • уменьшение СОС25-75%;
  • уменьшение ПОСвыд;
  • норма или увеличение ФОЕ;
  • увеличение ООЛ.

Должные величины, с которыми обычно сравнивают полученные показатели, следующие:

  • ЖЕЛ не менее 90;
  • ОФВ1 не менее 85;
  • индекс Тиффно не менее 70;
  • ООЛ – от 90 до 110;
  • соотношение ООЛ к ОЕЛ не более 105.

Наиболее ранним и достоверным признаком бронхиальной обструкции является снижение расчетного показателя средней объемной скорости на уровне 25-75% от ФЖЕЛ. Однако расчет этой величины требует очень точных измерений, поэтому обычно лишь компьютерная спирометрия дает возможность узнать этот показатель. Таким образом, четко прослеживается уменьшение значений, связанных с выдохом и увеличение показателей, связанных с вдохом. Это обусловлено трудностью прохождения воздуха через суженный просвет бронхов.

На основании одних лишь результатов, полученных при таком исследовании, нельзя с уверенностью говорить о бронхиальной астме. Этот диагностический метод позволяет обнаружить наличие бронхиальной обструкции — сужения просвета бронхов. Наблюдается такая патология не только при астме, но также при хронической обструктивной болезни легких, бронхите, облитерирующем бронхиолите, туберкулезе. В связи с этим для постановки окончательного диагноза необходимо провести другие исследования: рентген грудной клетки, анализ мокроты, анализы крови.

источник

Важное диагностическое значение имеет анализ петли объем-поток максимального форсированного выдоха и вдоха. Эта петля образуется в результате наложения по вертикальной оси графика скорости потока, а по горизонтальной — величины легочного объема, Эта петля строится современными электронными спирометрами в автоматическом режиме. На этой петле выделяются основные показатели спирограммы.

По форме петли и изменениям ее показателей можно выделить норму и основные типы дыхательной недостаточности: обструктивную, рестриктивную и смешанную.

У здорового человека в заключении исследования дыхательной функции обычно указывается, что нарушений нет. В таблице приведен перечень показателей функции дыхательной системы и их нормальные величины. Большинство значений показателей выражены в % отношении к так называемым «должным» величинам. Это величины, характерные для здорового человека мужского или женского пола, возраста, веса и роста. Условно это можно считать «нормальными» величинами

Нормальная петля поток-объем выдоха имеет быстрый пик максимальной скорости выдоха (ПОС) и постепенный спад потока до нулевой отметки, причем на нем имеется линейный участок — МОС50выд. Петля вдоха на отрицательной части оси потока достаточно глубокая, выпуклая, чаще симметричная. МОС 50 вд > МОС50выд.

В норме ОФВ1, ФЖЕЛ, ОФВ1 / ФЖЕЛ превышают 80% нормативных показателей. Если эти показатели менее 70% нормативных — это признак патологии.

Диапазон от 80% до 70% должных трактуется индивидуально. У старших возрастных групп такие показатели могут быть и в норме, у людей молодых и средних лет они могут обозначать начальные признаки обструкции. В таких случаях надо углубить обследование, провести пробу с агонистами В2-адренорецепторов.

Обозначения Нормаль ные величины в %% к должной (Д)
vital capacity > 80%
forced vital capacity .> 80%
maximal voluntary ventilation > 80%
residual volume FEV1 ОФВ1 — объем форсированного выдоха за 1 сек (л) FEV/ FVC % ОФВ1/ФЖЕЛ — объем форсированного выдоха в %% к ФЖЕЛ FEV 25-75% МОС25-75% — объемная форсированная скорость выдоха в интервале 25-75% ФЖЕЛ PEF ПОС — пиковая объемная форсированная скорость выдоха FEF (MEF)25% МОС25% — объемная форсированная скорость выдоха интервале 25% ФЖЕЛ FEF (MEF)50% МОС50% — объемная форсированная скорость выдоха интервале 50% ФЖЕЛ FEF (MEF)75% МОС75% — объемная форсированная скорость выдоха интервале 75% ФЖЕЛ
ОФВ1 > 80% должного норма
65 — 80% мягкая
50 — 65% умеренная
тяжелая

Для диагностики степени обратимости обструктивной дыхательной недостаточности рекомендую широко использовать ингаляционную пробу с сальбутамолом. Ее результаты позволяют выделить 3 варианта обратимости обструкции

— обратимую: увеличение ОФВ1 на 15 и > % от исходной;

— частично обратимую: увеличение ОФВ1 на 6 — 14% от исходной;

— необратимую: прирост показателя не превышает 5% от исходного.

Обструкция верхних дыхательных путей

Анализируя форму петли поток-объем можно выявить обструкцию верхних дыхательных путей. Различают три функциональных типа обструкции верхних ДП:

  • постоянная обструкция
  • переменная внутригрудная обструкция
  • переменная внегрудная обструкция.

(D) Постоянная обструкция верхних дыхательных путей (например, стеноз трахеи вследствие трахеостомии, двусторонний паралич голосовых связок, зоб).

При «постоянной обструкции» (т.е. обструкции, геометрия которой остается постоянной в обеих фазах дыхания) происходит ограничение воздушного потока как на вдохе, так и на выдохе . Если постоянная обструкция находится в центральных дыхательных путях, то при анализе петли «поток-объем» обнаруживается снижение объемной скорости потока как на вдохе, так и на выдохе.

Верхняя и нижняя части кривой уплощены, ее конфигурация по форме приближается к прямоугольнику, а легко обнаруживаемый в норме пик потока отсутствует. Контур экспираторного потока похож на инспираторный, скорости середины потока как вдоха (MIF), так и выдоха (MEF) приблизительно равны. (В норме объемная скорость потока на вдохе приблизительно в 1.5 раза выше, чем на выдохе.) Постоянное сужение приводит к ограничению потока в равной степени во время выдоха и во время вдоха.

Динамические факторы оказывают различное воздействие на внутригрудные и внегрудные дыхательные пути (ДП). Внутригрудные ДП во время вдоха поддерживаются открытыми отрицательным плевральным давлением. Во время форсированного выдоха положительное плевральное давление, окружающее ДП, создает компрессию и уменьшает их диаметр. Следовательно, сопротивление ДП повышается только во время выдоха.

Отрицательное давление в просвете внегрудных ДП является причиной их сужения на вдохе. Во время выдоха вышеуказанное давление становится положительным, и диаметр дыхательных путей увеличивается. В норме широкие ДП ведут себя как полуригидные трубки и подвержены только умеренной компрессии. Однако если ДП становятся суженными и пластичными, их сопротивление во время дыхания может заметно колебаться.

(E) Переменная внегрудная обструкция (например, паралич или опухоль голосовой связки) приводит к избирательному ограничению объемной скорости потока воздуха во время вдоха.

Когда парализована одна голосовая связка, она пассивно перемещается в соответствии с градиентом давления вдоль надгортанника. Во время форсированного вдоха она смещается внутрь, что приводит к снижению инспираторного потока и появлению плато. Во время форсированного выдоха парализованная голосовая связка смещается в сторону, поэтому экспираторная кривая не изменена.

Наличие такой обструкции можно легко предположить, когда меняются отношения между объемными скоростями середины потока: скорость вдоха заметно снижается по сравнению со скоростью выдоха (MIF 50%

(F) Переменная внутригрудная обструкция (например, полип, аденома бронха, трахеомаляция). Компрессия ДП избирательно увеличивается во время выдоха.

Во время форсированного вдоха отрицательное плевральное давление поддерживает трахею в открытом состоянии, поэтому объемная скорость потока и форма петли не изменяются по сравнению с нормой.

Во время форсированного выдоха вследствие потери структурной прочности происходит сужение трахеи, что выражается в появлении плато и уменьшении потока. Кривая свидетельствует о том, что в начале выдоха поток относительно сохранен. Это наблюдается до того, как происходит компрессия просвета дыхательных путей.

(B) Рестриктивное заболевание (например, саркоидоз, кифосколиоз). Кривая имеет более узкую форму вследствие уменьшения легочных объемов, но ее форма в основном соответствует нормальной кривой, как на рисунке (A). Потоковые параметры нормальные (на самом деле они даже выше нормальных для соответствующих легочных объемов, что объясняется возрастанием эластической тяги легких и/или тем, что грудная стенка способствует сохранению открытыми дыхательных путей.

ОФВ1 и ФЖЕЛ уменьшаются пропорционально, что приводит к тому, что коеффициент ОФВ1 / ФЖЕЛ нормален или даже выше нормы.

Пример: рестриктивный тип изменений спирограммы у больной с кифосколеотической грудной клеткой.

Читайте также:  Сингуляр по льготе при бронхиальной астме
Показатель Должный % должному
FVC ( ФЖЕЛ) 0.96 2.75 35
FEV1 (ОФВ1) 0.94 1.90 49
FEV1/FVC (ОФВ1 / ФЖЕЛ) 98 69
FEF25-75 (МОС25-75) 2.25 2.11 107
PEF (ПОС) 2.98 5.40 55

Еще раз всмотритесь и запомните типовые изменения петли поток-объем при различных типах спирограммы и различной патологии.

Так выглядят петли объем-поток при этих типах ДН.

На рисунке, приведенной ниже, приведены типичные изменения петли объем-поток при наиболее растпространенной патологии легких.

При основных типах дыхательной недостаточности — обструктивной и рестриктивном, закономерно изменяются легочные объемы.

Как видно на представленном рисунке, по сравнению с нормой для обструктивной дыхательной недостаточности характерно увеличение остаточного объема легких ( RV, ООЛ), тода как общая емкость легких ( TLC , ОЕЛ) не изменяется или даже увеличивается

Для рестриктивного же типа дыхательной недостаточности характерно уменьшение общей емкости легких ( TLC , ОЕЛ) как за счет уменьшения жизненной емкости легкого ( IVC , ЖЕЛ), так и остаточного объема легих ( RV , ООЛ), .

VC — vital capacity — жизненная емкость ; FVC — forced vital capacity — форсированная жизненная емкость

Уменьшение — отмечается при дыхательной недостаточности , при уменьшенной способности легких расширяться во время вдоха.

MVV — maximal voluntary ventilation — объем максимальной вентиляции легких

Уменьшение — отмечается при снижении способности легких к растяжению, при ослаблении дыхательных мышц. Это наблюдается при эмфиземе легких, интерстициальных заболеваниях легких .

RV — residual volume — остаточный объем легких

Увеличение — характерно для эмфиземы легких

FEV 1 — forced expiratory volume in 1 sek — объем форсированного выдоха за 1 сек; FEV 1/ FVC % — отношение объема форсированного выдоха за 1 сек к форсированной жизненной емкости легких

Уменьшение — наблюдается при сужении просвета бронхов, что затрудняет выдох. Характерно для бронхиальной астмы, хронического обструктивного бронхита

FEV 25-75% — mean forced expiratory flow during the middle — объемная форсированная скорость выдоха; PEF — peak expiratory flow — пиковая объемная форсированная скорость выдоха

Уменьшение — обусловлено сужением просвета бронхов без четких указаний на уровень сужения. Характерно для бронхиальной астмы , хронического обструктивного бронхита

1) FEF ( MEF )25% — mean forced expiratory flow during the 25% of FVC — объемная форсированная скорость выдоха на 25% форсированной ЖЕЛ

2) FEF (MEF)50% -mean forced expiratory flow during the 50% of FVC — объемная форсированная скорость выдоха на 50% форсированной ЖЕЛ

3) FEF (MEF)75% -mean forced expiratory flow during the 75% of FVC — объемная форсированная скорость выдоха на 75% форсированной ЖЕЛ

Уменьшение указанных трех показателей в отдельности или в совокупности обусловлено сужением просвета бронхов — на уровне мелких, средних и крупных бронхов. Характерно для бронхиальной астмы , хронического обструктивного бронхита

Классификация в ентиляционных изменений типа с пиро граммы

FEV 1 (ОФВ1)

или н ормальный

FVC (ФОЕ)

или н ормальный

FEV 1 /FVC (ОФВ1 / ФЖЕЛ)
Показатели Норма Степени дыхательной недостаточности
I степень (незначительная) II степень (умеренная) III степень (выраженная)
1. Клинические:
а) одышка нет при доступных ранее усилиях при обычных нагрузках постоянная в покое
б) цианоз нет нет или незначительный, усиливающийся после нагрузки отчетливый, иногда значительный резко выраженный диффузный
г) пульс в покое до 80 не учащен наклонность к учащению значительно учащен
2. Инструментальные:
а) парциальное давление кислорода более 80 80 79-65 менее 65
б) объем форсированного вдоха более 80 80-70 69-50 менее 50
в) отношение объема форсированного выдоха за 1 секунду к жизненной емкости легких (ОФВ1/ЖЕЛ — индекс Тиффно) — в процентах более 70 менее 70 менее 70 менее 70

При анализе показателей спирограммы надо учитывать возможный статистический разброс при их повторении у одного и того же человека.

Как видно из приведенных данных наименьший разброс имеют такие показатели как FVC ( ФЖЕЛ) и FEV1 ( ОФВ1).

источник

Определение скорости потока и легочных объемов используют для дифференцировки обструктивных и рестриктивных нарушений, определения тяжести заболевания и оценки эффективности лечения.

Показатели представлены в виде абсолютных и относительных величин. В качестве должных значений используются данные, полученные при обследовании больших популяций, предположительно имеющих нормальную функцию легких. Для определения должных величин используются такие факторы, как возраст, пол, этническая принадлежность и рост.

Скорость потока. Количественное измерение скорости потока на вдохе и на выдохе проводится с помощью форсированной спирометрии. Для выключения носа из акта дыхания используются специальные зажимы.

При оценке скорости потока на выдохе пациент делает максимально глубокий вдох, обхватывает губами насадку и выдыхает воздух максимально сильно в аппарат, который фиксирует выдыхаемый объем. Современные приборы измеряют только скорость потока и интегрируют время для определения объема выдыхаемого воздуха.

При оценке скорости потока на вдохе и объема вдоха пациент делает максимальный выдох, а затем — интенсивный вдох. Эти приемы позволяют получить несколько измерений.

Мгновенная объемная скорость выдоха, определяемая при выдыхании от 25 до 75% ФЖЕЛ, является более чувствительным, но менее воспроизводимым маркером легкой обструкции мелких дыхательных путей, чем ОФВЛ Пиковая скорость выдоха (ПСВ) используется прежде всего для домашнего контроля у пациентов с бронхиальной астмой, а также для определения суточных колебаний.

Интерпретация этих значений зависит от усилий пациента, поэтому важно научить пациента правильно дышать во время исследования. На спирограмме приемлемого качества можно увидеть хорошее начало исследования (быстрое и сильное начало выдоха), отсутствие кашля, гладкие кривые и отсутствие раннего завершения выдоха (минимальное время выдоха 6 с. без изменения объема за последнюю с.). Повторные попытки должны отличаться от остальных не более чем на 5% или 100 мл. Результаты, не соответствующие этим минимальным критериям, следует интерпретировать с осторожностью.

Легочные объемы. Легочные объемы измеряют с помощью определения функциональной остаточной емкости легких (ФОЕЛ) и спирометрии.

Методы разведения газа включают:

  • Вымывание азота.
  • Выравнивание концентрации гелия.

При вымывания азота пациент выдыхает до ФОЕЛ, а затем дышит через спирометр, содержащий 100%-ный кислород. Исследование заканчивается, когда в выдыхаемом воздухе концентрация азота становится равной нулю. Собранный объем азота равен 81% от первоначальной ФОЕЛ.

Характерные физиологические изменения при заболеваниях легких

Показатель Обструктивные заболевания Рестриктивные заболевания Смешанная патология
ОФВ1/ФЖЕЛ Снижение Норма или повышение Снижение
ОФВ1 Снижение Снижение, норма или повышение Снижение
ФЖЕЛ Снижение или норма Снижение Снижение, норма или повышение
ОЕЛ Норма или повышение Снижение Снижение, норма или повышение
ОО Норма или увеличение Снижение Снижение, норма или повышение

При выравнивании концентрации гелия пациент выдыхает до ФОЕ, а затем начинает дышать с помощью закрытой системы, которая содержит определенные объемы гелия и O2. Концентрация гелия измеряется до момента достижения единых значений как на вдохе, так и на выдохе. В дальнейшем количество воздуха в легких оценивается по изменению концентрации гелия.

Оба метода занижают ФОЕЛ, поскольку они измеряют только объем легких, который проходит через дыхательные. У некоторых больных с тяжелой обструкцией дыхательных путей существенное количество воздуха может не попадать в дыхательные пути, задерживаясь в легких.

Бодиплетизмография основана на законе Бойля и позволяет измерить объем сжимаемого газа в грудной клетки. Метод считается более точным, чем результаты методы разведения газов. Находясь в воздухонепроницаемом корпусе, пациент пробует вдохнуть через закрытый наконечник с ФОЕЛ. Поскольку грудная стенка расширяется, давление в герметичном корпусе повышается. Зная объем и давление внутри корпуса до и после выполнения вдоха, можно вычислить изменение объема корпуса, который должен быть равен изменению объема легких.

Зная ФОЕЛ, можно разделить легочные объемы на подобъемы, которые можно измерить спирометрически или подсчитать . В норме ФОЕЛ составляет около 40% от общей емкости легких (ОЕЛ).

Таблица: Тяжесть обуструктивных и рестириктивных заболеваний легких

Степень тяжести Обструктивные Рестриктивные
Норма >70 >80 >80
Легкая 80 70-79
Средняя 16 мг/мл исключает диагноз. ПКэд в диапазоне 1-16 мг/мл являются неинформативными.

Для выявления бронхоспазма также используют пробу с физической нагрузкой, но этот метод является менее чувствительным чувствительным, чем проба с метахолином. Пациент выполняет постоянный уровень нагрузки на тредмиле или велоэргометре в течение 6-8 мин в темпе, позволяющим увеличить частоту сердечных сокращений до 80% от расчетной максимальной частоты. OФB и ФЖЕЛ измеряются до выполнения пробы, далее через 5,15 и 30 мин после ее начала. Индуцированный нагрузкой бронхоспазм уменьшает ОФВЛли ФЖЕЛ >15% по сравнению с первоначальными данными. Данный метод активно используется Международным олимпийским комитетом. Проведение данного теста включает в себя гипервентиляцию газовой смесью 5% СO2 и 21% O2 при 85% от максимальной произвольной вентиляции в течение 6 мин. ОФВ1 измеряют через заданные промежутки времени после проведения испытания. Как и при выполнении других провокационных проб, степень снижения ОФВ1, которая является диагностической, варьирует в разных учреждениях.

Рестриктивные заболевания легких приводят к сокращению объема легких, в частности ОЕЛ

источник

ФИЗИОЛОГИЯ ДЫХАНИЯ

Дыхание является одной из важнейших физиологических функций. Это — газообмен между внешней средой и организмом, при котором потребляется кислород, выделяется углекислый газ и образуется необходимая энергия. Оно включает внешнее (легочное) дыхание, транспорт газов кровью и газообмен в тканях (тканевое, или внутреннее, дыхание). Внешнее дыхание, в свою очередь, состоит из 3-х этапов: вентиляции — обмена воздуха между окружающей средой и альвеолами, диффузии газов через альвеолярно-капиллярную мембрану и перфузии крови в легочных капиллярах.

Для исследования тканевого дыхания применяются биохимические методы, например определение лактата в венозной крови, электрохимические анализаторы газов крови и метод полярографии.

Транспорт газов кровью можно оценить с помощью оксигемометров (пульс-оксиметров). В норме гемоглобин насыщен кислородом на 96 — 98 %. Для оценки перфузии легких используют изотопные методы (введение в вену альбумина, помеченного гамма-излучающим изотопом) и рентгенконтрастные методики. Диффузионную способность определяют при вдыхании небольшой концентрации угарного газа по скорости его попадания в кровь.

Из-за сложности соответствующей аппаратуры диффузионная способность легких и особенности гемодинамики определяются редко и в самых крупных специализированных клиниках, тогда как вентиляционная функция легких легко доступна для исследования широко распространенными приборами и методами. Ее в первую очередь характеризуют статические, динамические и производные легочные объемы и скоростные показатели дыхания.

1.1. Легочные объемы и емкости

Под легочными объемами понимают количество воздуха, содержащееся в легких в различные фазы дыхания. Выделяют и легочные емкости — сумму нескольких объемов. Статические объемы определяют при спокойном дыхании, а динамические — при форсированном. Производные объемы обычно вычисляются по формулам.

Различают следующие статические объемы и емкости:

ОЕЛ (ТLС) — общая емкость легких — весь воздух, находящийся в легких на высоте максимального вдоха;

ЖЕЛ () — жизненная емкость легких — наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. ЖЕЛ, полученная при вдохе после полного выдоха, несколько больше, так как не происходит блокирования воздуха в мельчайших бронхах (феномен «воздушной ловушки»);

ООЛ (RV) — остаточный объем легких — воздух, остающийся в легких после максимального выдоха;

ДО () — дыхательный объем — воздух, который проходит через легкие при спокойном вдохе и выдохе, в среднем — около 500 мл;

РОвд(выд) (IRV, ЕRV) — резервные объемы вдоха и выдоха — это воздух, который можно дополнительно вдохнуть или выдохнуть после спокойного вдоха или выдоха;

Евд(IC) — емкость вдоха — сумма ДО и РОвд;

ФОЕ (FRС) — функциональная остаточная емкость — воздух, остающийся в легких после спокойного выдоха, сумма ООЛ и РОвыд.

При обычном исследовании ОЕЛ, ООЛ и ФОЕ недоступны для измерения. Их определяют с помощью газоанализаторов, изучая изменение состава газовых смесей при дыхании в замкнутом контуре (содержание гелия, азота, радиоактивного ксенона), или при общей плетизмографии, когда испытуемый находится в герметичной кабине и измеряются колебания давления в ней при его дыхании.

Часть воздуха, находящегося в дыхательных путях и альвеолах, не участвующая в газообмене, называется мертвым пространством (МП). Анатомическое мертвое пространство — часть воздуха, на вдохе не достигающая альвеол, а на выдохе не выходящая в атмосферу, функциональное мертвое пространство — воздух неперфузируемых альвеол. Воздух мертвого пространства и остаточного объема участвует в согревании и увлажнении поступающего при вдохе газа для обеспечения необходимых условий для жизнедеятельности альвеол.

Определяется величина мертвого пространства теми же способами, что и остаточные объемы. В норме МП составляет 140 мл у женщин и 150 мл у мужчин, главным образом, за счет анатомического мертвого пространства. Под минутным объемом дыхания понимают количество воздуха, проходящего через легкие за минуту, его определяют по формуле МОД = ЧД х ДО, где ЧД — частота дыхания, в норме 12 — 20, в среднем 16 в минуту. Приняв ДО за 500 мл, получаем средний МОД — 8 л.

Если учитывать наличие МП, то в газообмене участвует лишь часть этого воздуха, которая называется альвеолярной вентиляцией и составляет AB = (ДО — МП) х ЧД. около 70 % МОД. При углубленном дыхании соотношение AB/МОД увеличивается, при поверхностном — уменьшается.

Количество потребляемого за 1 минуту кислорода (МПО2) легко определяется спирографически. На его основе можно определить величину основного обмена (ОО), зная энергетическую ценность кислорода с учетом дыхательного коэффициента. Для этого МПК умножают на 7,07 (число минут в сутках х средний калорический эквивалент кислорода):

ОО = МПК х 7,07(ккал/сут).

1.2. Пробы с форсированным дыханием

Помимо статических объемов, большое клиническое значение имеют динамические объемы, определяемые при форсированном (наиболее быстром и полном) дыхании, особенно при выдохе, т. к. вдох является более произвольным актом, и поэтому менее постоянен. Их использование в клинической практике способствует уточнению уровня бронхиальной обструкции и диагностике ранних проявлений бронхолегочных изменений в виде нарушений проходимости мелких бронхов.

Проводят пробу быстрого и полного выдоха из положения максимального вдоха, т. е. ФЖЕЛ (FVC) — экспираторную форсированную жизненную емкость. ФЖЕЛ меньше ЖЕЛ на 200 — 400 мл за счет спада в конце ускоренного выдоха части мелких бронхиол (экспираторный коллапс). Если имеется их патология, наблюдается феномен «захвата воздуха», когда ФЖЕЛ меньше ЖЕЛ на 1 л и более. При этом скорость форсированного вдоха (проба инспираторной ФЖЕЛ) будет больше, чем выдоха.

Случаи, когда ФЖЕЛ больше или равна ЖЕЛ, следует рассматривать как неправильно выполненную пробу. Все показатели нужно определять не менее 3 раз и брать наибольшее значение каждого. Кроме того, определяют объем форсированного выдоха за первую секунду (ОФВ1 = FEV10), который сравнивают либо с должной величиной, либо с ЖЕЛ или ФЖЕЛ.

Индекс Тиффно =(ОФВ/ЖЕЛ)х100%, в норме 70-80%

Он снижается при обструктивных процессах и может повышаться при «чистой» рестрикции, когда ЖЕЛ снижена, а скорость выдоха не уменьшилась. Однако поражение только мелких бронхов часто не приводит к изменению ОФВ1, поэтому проба Тиффно не может служить ранним признаком обструкции. При уменьшении ЖЕЛ и сохраненной бронхиальной проходимости этот показатель может несколько увеличиться, а при смешанных обструктивно-рестриктивных процессах его величина теряет свое диагностическое значение. Тогда вычисляют отношение ОФВ1 не к фактической, а к должной ЖЕЛ.

При определении индекса Тиффно требуется провести два раздельных иcследования — при спокойном дыхании (ЖЕЛ) и при форсированном выдохе, что снижает точность результата. Более достоверным можно считать индекс Генслера, выполняемый за один прием:

Индекс Генслера = (ОФВ1/ФЖЕЛ) х 100%,в норме 85-90%

Отметим, что ОФВ, ФЖЕЛ и ЖЕЛ берутся непосредственно в системе АТРS без пересчета.

Для более тонкой и точной характеристики нарушений аппарата дыхания определяют скорость выдоха в различные его моменты, а также пиковую объемную скорость выдоха (ПОСвыд), или наибольшую скорость за все время выдоха.

За рубежом часто определяют также объемы форсированного выдоха за 0,5, 2 и 3 с, время достижения наибольшей скорости выдоха, время выдоха половины ЖЕЛ и т. п. По сравнению с пробами Тиффно и Генслера более информативны мгновенные объемные скорости выдоха (МОС = FЕV в системе, принятой в США), измеренные в точках выдоха 25, 50, 75 и 85 % ЖЕЛ (МОС25, МОС50 и т. д.), характеризующие состояние крупных, средних и мелких бронхов соответственно, и средние объемные скорости на участках выдоха 25 — 50, 50 — 75, 75 — 80 % ЖЕЛ (СОС25_50 и т. д.).

В другой, европейской, системе обозначений отсчет ведется по доле ЖЕЛ, оставшейся в легких, тогда эти мгновенные скорости выдоха (МЕF) обозначаются, соответственно, МСВ75, МСВ50, МСВ25, МСВ25_75 и ПСВ (пиковая скорость выдоха).

Важные сведения о функциональных резервах аппарата внешнего дыхания дает тест максимальной вентиляции легких (МВЛ). Под максимальной вентиляцией легких понимают объем воздуха, проходящий через легкие за минуту наиболее частого и глубокого дыхания.

Обычно пробу проводят в течение 10 — 15 с, а результат приводят к 1 мин. В норме МВЛ в 8-20 раз больше МОД и достигает 150 — 180 л. Установлена тесная корреляция изменений МВЛ и ОФВ1, поэтому некоторые авторы ограничиваются определением только ОФВ1.

Дополнительную информацию может дать форма кривой максимальной вентиляции легких, которая смещается вверх при обструкции за счет захвата воздуха (увеличение ФОЕ и уменьшение РОвд).

1.3. Системы физических условий, в которых могут находиться газовые объемы при спирографии

Анализируя дыхательные объемы, нужно учитывать их зависимость от изменений давления, температуры и влажности. В легких воздух находится в альвеолярных условиях, т. е. при t = 37 °С, относительной влажности воздуха 100 % и давлении, примерно равном атмосферному. В таких же условиях приведены должные величины в таблицах и формулах (реже — в стандартных). Когда воздух выходит из легких во внешнюю среду или в контур спирографа, он быстро охлаждается до комнатной температуры, а излишняя влага конденсируется, при этом относительная влажность остается 100 % (для комнатной температуры), а давление не изменяется. Такие условия называются атмосферными.

Измеренное потребление кислорода принято приводить к стандартным условиям — 0°С, нулевой влажности, давлению 760 мм рт. ст. Эти три системы условий сокращенно называются BTPS (альвеолярные условия — Body temperature, Pressure, Saturated), ATPS (атмосферные — Ambient Temperature, Pressure, Saturated) и STPD (стандартные — Standard Temperature. Pressure, Dry). Полученные при спирографии (в атмосферных условиях) величины приводят к альвеолярным и стандартным условиям. Для таких пересчетов разработаны таблицы и номограммы, в которых с учетом температуры, давления и иногда влажности находят соответствующие коэффициенты (Табл. 1).

Приближенные коэффициенты пересчета к ВТРS и SТРD (при атмосферном давлении 740 — 780 мм рт. ст.)

t °С
BTPS 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05
STPD 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86

При массовых исследованиях допустимо использовать коэффициент 1,1 для перевода к ВТРS и 0,9 — к SТРD. Не следует пересчитывать объемы, если они используются в какой-либо формуле, основанной на делении двух показателей, полученных в одной системе условий (например, индекс Тиффно, табл. 2).

Степень нарушения вентиляционной функции легких по Н.Н. Канаеву

Градации Норма Условная норма Снижение
Показатель Умеренное Значительное Резкое
ЖЕЛ (%) > 90 85-90 70-84 50-69 85 75-85 55-74 35-54 70 65-70 55-64 40-54 МОС50выд.

Основные показатели спирографии:

Сокращенные обозначения Обозначения Показатели Нормальные величины в %% к должной (Д)
VC vital capacity ЖЕЛ — жизненная емкость легких > 80%
FVC forced vital capacity ФЖЕЛ — форсированная жизненная емкость легких .> 80%
MVV maximal voluntary ventilation МВЛ — объем максимальной вентиляции легких > 80%
RV residual volume ООЛ — остаточный объем легких
FEV1 forced expiratory volume in 1 sek (liter) ОФВ1 — объем форсированного выдоха за 1 сек (л) > 75%
FEV/ FVC % forced expiratory volume in 1 sek as percentage of FVC ОФВ1/ФЖЕЛ — объем форсированного выдоха в %% к ФЖЕЛ > 75%
FEV 25-75% mean forced expiratory flow during the middle of FVC МОС25-75% — объемная форсированная скорость выдоха в интервале 25-75% ФЖЕЛ > 75%
PEF peak expiratory flow ПОС- пиковая объемная форсированная скорость выдоха > 80%
FEF (MEF)25% mean forced expiratory flow during the 25% of FVC МОС25%- объемная форсированная скорость выдоха в интервале 25% ФЖЕЛ > 80%
FEF (MEF)50% mean forced expiratory flow during the 50% of FVC МОС50% — объемная форсированная скорость выдоха в интервале 50% ФЖЕЛ > 80%
FEF (MEF)75% mean forced expiratory flow during the 75% of FVC МОС75% — объемная форсированная скорость выдоха в интервале 75% ФЖЕЛ > 80%

В норме ОФВ1, ФЖЕЛ, ОФВ1/ФЖЕЛ превышают 80% нормативных показателей. Если эти показатели менее 70% нормативных — это признак патологии (Табл. 3).

Диапазон от 80% до 70% должных трактуется индивидуально. У старших возрастных групп такие показатели могут быть и в норме, у людей молодых и средних лет они могут обозначать начальные признаки обструкции. В таких случаях надо углубить обследование, провести пробу с агонистами β2-адренорецепторов.

Дата добавления: 2016-04-02 ; просмотров: 4208 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *