Меню Рубрики

Слабость соединительной ткани при близорукости

Cлабый организм, слабая наружная оболочка глаза, длительная работа на близком расстоянии, увлечение компьютером, наследственность, слабость внутриглазной мышцы

Здравствуйте, уважаемые слушатели нашего университета!

Мы продолжаем самую обсуждаемую тему, так как больше всего обращений к нам идет от Вас по вопросу близорукости.

Итак, специалисты различают три степени близорукости:

  • слабая — до 3 диоптрий;
  • средняя — от 3 до 6 диоптрий;
  • высокая — свыше 6 диоптрий.

Степень близорукости измеряется силой той линзы, которая ее исправляет.

Например, линза –4,0 диоптрии обеспечивает 100 % зрение. Следовательно, глаз имеет близорукость средней степени в –4,0 диоптрии.

Напомним, что преломляющая сила (рефракция) линзы – это величина, обратная ее фокусному расстоянию, выраженному в метрах. Измеряется она в диоптриях. Линза силой в 1 диоптрию (обозначается латинской буквой 1D, по-русски 1 дптр.) имеет фокусное расстояние в 1 метр, 2 диоптрии – в 0,5 м., 10 диоптрий — в 0,1 м. и т.д.

Итак, когда говорят, что у человека близорукость 2 диоптрии, это означает, что фокус его глаза находится перед сетчаткой и что человек четко видит предметы, находящиеся на расстоянии 1/2 метра от глаз, и для того чтобы резко увидеть далекие предметы, ему необходимо поместить перед глазами вогнутые, отрицательные линзы силой -2 D.

Причины и механизм развития близорукости и спазма аккомодации

Как же проявляется близорукость и с чего она начинается? В чем проблема? Все начинается с жалоб. Жалобы при этом бывают разные: снижение остроты зрения вдаль; затуманивание зрения; трудности при переводе взгляда с ближних предметов на дальние и обратно (замедленная перефокусировка); кажущееся изменение окраски предметов; двоение видимых предметов; «мурашки» и потемнение в глазах; избыточная световая чувствительность; снижение зрительной работоспособности; перенапряжение глаз; зрительное утомление.

Как правило, близорукость развивается в школьные годы. Дети начинают хуже видеть удаленные предметы, плохо различают буквы и цифры, написанные на классной доске, стараются сесть поближе к телевизору, на первые ряды в кинотеатре. При попытке рассмотреть удаленные предметы близорукие люди нередко прищуривают глаза. Чаще всего истинная близорукость, осевая начинается со спазма аккомодации. Таким образом, спазм аккомодации (СА) – первая стадия осевой, т.е. истинной близорукости.

Такая форма близорукости как спазм аккомодации может исчезнуть вследствие медикаментозного или оптико-физиологического аппаратного лечения, уменьшения зрительной нагрузки, увеличения возраста пациента.

СА есть первый шаг в развитии осевой, т.е. истинной близорукости, ее первая фаза. При аккомодационном спазме глаз сохраняет еще шаровидную форму, при осевой близорукости переднее — задний размер глаза, т.е. ось увеличивается, и глаз из шаровидного становится эллипсовидным.

Вначале СА выражен слабо (0,25 — 0,5 D), а главное, он перемежающийся, преходящий, короткоживущий. Ученик и его родители могут и не подозревать о наличии СА. Появляется некоторая размытость контуров букв на доске, которая быстро проходит, и ученик часто не придает этому значения.

Зрение восстанавливается за время перерывов между уроками или по пути из школы домой. Далее длительность СА увеличивается до часов и дней. Некоторое восстановление зрения происходит после нескольких часов отдыха, ночного сна, выходных дней, каникул. Затем падение зрения становится более стойким и восстанавливается полностью или частично только после аппаратного оптико-физиологического лечения, применения различных медикаментов.

Существует много причин, вызывающих возникновение близорукости. Но главными из них ученые считают следующие:

  • ослабленная склера, которая не оказывает должного сопротивления чрезмерному росту глаза;
  • чрезмерная зрительная работа на близком расстоянии от предмета (без отдыха для глаз и при плохом освещении);
  • наследственная предрасположенность;
  • cлабость аккомодационной мышцы, отвечающей за «настрой» хрусталика на разные расстояния, и как следствие, ее перенапряжение.

Как видно причин развития близорукости много, но все ж таки, какая является главной, первичной? Почему при одинаково тяжелой зрительной нагрузке у одних детей развивается близорукость, у других – нет? Ответ очень прост. Сильный организм способен выдерживать такие нагрузки, слабый соответственно – нет.

Именно у слабых и развивается близорукость.

Существует целый ряд факторов, являющихся причиной слабости организма:

  • родовые повреждения шейного отдела позвоночника и спинного мозга;
  • рахит;
  • заболевания носоглотки и полости рта: тонзиллит, гайморит, аденоиды;
  • аллергические и инфекционные заболевания: корь, скарлатина, дифтерия, туберкулез, инфекционный гепатит и пр.;
  • общее снижение иммунитета;
  • нарушения опорно-двигательной системы: плоскостопие, сколиоз и т.д.

Все указанные факторы при чрезмерной зрительной нагрузке в подавляющем проценте в состоянии вызвать спазм аккомодации, положив начало развитию близорукости, а в дальнейшем способствовать ее прогрессированию.

Вполне понятно, что если встречается наследственный фактор, когда один или оба родителя близоруки, процесс миопизации, т.е. развития близорукости начинается раньше и протекает стремительнее.

Надо отдавать себе отчет в том, что близорукость – это не просто нарушение в оптическом аппарате глаза, вследствие чего зрение вдаль понижается. Это нарушение во всем организме на уровне обменных процессов. В силу нарушения белкового и минерального обмена склера – та оболочка, что держит его круглую форму, слабеет и глаз растягивается в длину, приобретая неправильную грушевидную форму. Больше всего страдает при этом задний отдел глаза. Сетчатка глаза, которая обеспечивает само зрительное восприятие также растягивается, функция ее нарушается. В тяжелых случаях возможно ее отслоение от подлежащей ткани или даже разрывы. Зрение при этом утрачивается. Это серьезнейшее и опасное осложнение. Когда близорукий глаз растягивается (это видно при специальном обследовании) офтальмологи говорят, что на глазном дне есть миопический конус (это начальная степень изменения) или задняя стафилома ( это уже проявление далеко зашедшего процесса). Зрение при этом резко снижено, пациент не видит даже первой строчки всем известной таблицы для проверки остроты зрения и испытывает затруднение при сумеречном освещении и в темноте.

Важно знать также, что высокая близорукость является противопоказанием к ряду профессий, требующих особо хорошего зрения. Она ограничивает человека и в быту. Таким людям противопоказаны тяжелые физические нагрузки, поднятие тяжестей, пребывание в положении с опущенной головой. Для женщины это вопрос родов – естественные роды исключаются, альтернативой является кесарево сечение.

Итак, мы подошли к главной причине появления и развития близорукости – слабость склеры, а точнее соединительной ткани, из которой она состоит. Что входит в понятие «соединительная ткань»? Как оказалось, это почти все, из чего мы состоим. Соединительная ткань в организме существует в 4-х состояниях:

  • волокнистом – сухожилия, фасции, связки, суставные сумки;
  • твердом – кости;
  • гелеобразном – хрящи;
  • жидком – кровь, лимфа, межклеточная и спинномозговая жидкость.

Соединительная ткань поддерживает каркас любого органа, соединяет клетки между собой, входит в состав стенок всех капилляров – она вездесуща. Наше тело на 85 % состоит из соединительной ткани. Ученые и врачи назвали состояние, при котором из-за слабости соединительной ткани возникают предпосылки к болезни и, собственно, сами болезни синдромом соединительнотканной недостаточности.

В мире родился новый термин – синдром дисплазии соединительной ткани или синдром коллагенопатии, т.е. нарушение самого коллагена, составляющего основу соединительной ткани.

Коллаген, как арматура в железобетоне, определяет ее прочность.

Как Вы думаете, может ли быть соединительная ткань слабой в глазу и сильной в позвоночнике, который держится ровно, прямо благодаря исключительно сильной соединительной ткани? Конечно же нет. Просто глазные врачи часто не обращают внимания на общую закономерность и лечат исключительно только глаз, а у этого пациента если не искривление позвоночника по типу сколиоза, лордоза, то может быть плоскостопие, опущение внутренних органов, так как опять причиной всему — слабая соединительная ткань, только чаще всего никто это не выявляет.

И если отойти от укоренившихся стереотипов, устаревших правил, то несложно сделать вывод, что близорукость – это один из симптомов большого синдрома соединительнотканной недостаточности и лечить ее должны не только глазные врачи, но и ортопеды, педиатры, терапевты т.е. лечить следует весь организм.

Итак, главным проявлением близорукости является слабость аккомодационной мышцы и наружной оболочки глаза — склеры. Следует всем знать, что слабость глаза – это есть проявление слабости всего организма. Слабость глаз относится к местным нарушениям — снижение остроты зрения вдаль и другие жалобы о которых мы говорили выше: изменение преломляющей силы глаза, его удлинение, нарушение аккомодации и конвергенции, обмена веществ, кровоснабжения. Слабость всего организма проявляется изменением иммунитета, частотой различных заболеваний, быстрой утомляемостью, головными болями, нарушением функции опорно-двигательного аппарата: искривлением позвоночника, плоскостопием, опущением внутренних органов и многими другими расстройствами.

В связи с этим лечение близорукости должно быть комплексным и лечить следует как глаза, так и организм вцелом.

Что нужно делать, с чего начинать, если появились первые симптомы снижения зрения? Просто проверить остроту зрения, назначить очки, выписать поливитамины или витамины для глаз, чем чаще всего ограничиваются в поликлиниках, явно не достаточно.

В соответствии с международным стандартом, для того, чтобы правильно поставить диагноз, следует в условиях специализированного глазного центра, которым является Крымский республиканский медицинский центр реабилитации зрения или достаточно оснащенного поликлинического кабинета произвести 22 специальных исследования глаз.

На основании исследования ставится диагноз: спазм аккомодации, близорукость. Выявленный диагноз требует адекватного лечения у офтальмолога и педиатра или терапевта, и делать это следует параллельно.

Глазной врач назначает строго индивидуальное лечение, отличающееся количеством аппаратов, последовательностью их воздействия на пациента, временем воздействия, а также продолжительностью курса лечения (от 10-ти до 15-ти дней). Цель лечения — снять спазм с аккомодационной мышцы, улучшить ее работу, усилить кровоснабжение глаз, снизить их утомляемость и предотвратить дальнейшее прогрессирование близорукости. Лечение глаз включает биомеханостимуляцию, электростимуляцию глаза, тренировку аккомодации на специальных аппаратах, биорезонансную терапию, компьютерные лечебные программы, визотренинг, оптико-физиологический массаж на лечебном комбайне. В комплекс лечения глаз входит физиотерапевтическое лечение, ультразвук, электрофорез, лазер. Такое лечение глаз должно проводиться 2 раза в год.

Крепкого Вам здоровья, до новых встреч.

С уважением, доктор Л.К. Дембский

источник

Близорукость (миопия) — самый распространенный вид глазной патологии, которой страдает каждый третий житель планеты. Миопия — недостаток зрения, при котором хорошо видны предметы, расположенные близко от него и плохоразличимы — отдаленные. При этом входящие в глаза параллельные лучи, отражающиеся от отдаленного предмета, собираются перед сетчаткой, тогда как для хорошего зрения лучи должны собираться непосредственно на ней. При напряженной зрительной работе могут быть жалобы на усталость и даже боль в глазах, чувство жжения, покалывания в глазах, головная боль. Причем головная боль может возникать из-за неправильно подобранных очков.

1. Врожденная слабость соединительной ткани.

2. Наследственная предрасположенность.

3. Чрезмерное напряжение органов зрения при работе на близком расстоянии от предмета.

4. Ослабление организма из-за различных заболеваний.

5. Постоянное плохое освещение рабочего места.

6. Неправильная посадка при чтении и письме.

Медики выделяют врожденную или приобретенную миопию. Прогрессирование близорукости может быть связано с патологическим увеличением длины глазного яблока. Как следствие — ухудшается питание тканей глаза, истончается, разрывается или отслаивается сетчатка, происходит помутнение стекловидного тела.

Людям, страдающим близорукостью не рекомендуется работа, связанная с подъемом тяжестей, а также та, когда требуется сгибать тело так, чтобы голова наклонялась вниз. При занятиях спортом исключить те, при которых требуется резкое сотрясения тела (прыжки, бокс, борьба и т.п.), так как это может привести к отслоению сетчатки и/или слепоте.

Медики выделяют три степени миопии:

1. Близорукость слабой степени- до 3 диоптрий.

2. Близорукость средней степени- до 6 диоптрий.

3. Близорукость высокой степени — выше 6 диоптрий.

Близоруким людям нужны очки для дали, а если миопия высокой степени, то и для близи. Очки не корректируют зрение, т.к. не могут влиять на изменения в оболочках близорукого глаза. Сейчас все больше людей носят контактные линзы, но они требуют гораздо большего ухода и не всегда удобны.

При близорукости сила стекол очков и контактных линз обозначается отрицательным числом. Чем оно выше и более отрицательно, тем стекла и линзы более сильные. Если близорукость прогрессирует, применяется склеропластика (операция, укрепляющая задний отрезок глаза).

Операции по устранению симптомов близорукостиделаются с помощью специальных лазеров. Если с его помощью удалить тончайший слой роговичной ткани, роговица в ответ уплощается, что позволяет световым лучам в глазу собираться на сетчатке. Более часто делают другой вид операции, при которой из поверхностных слоев роговицы вырезается лоскут, под ним с помощью лазера удаляется небольшая часть роговичной ткани, после чего роговичный лоскут кладется на место. Если близорукость высокой степени (более 12 диоптрий), применяют полостную операцию, при которой хрусталик заменяют специальной линзой.

Читайте также:  У кого какая степень близорукости

1. Правильный световой режим — читать и писать только при хорошем освещении.

2. Врачи советуют чередовать зрительное напряжение с активным, подвижным отдыхом, лучше всего на свежем воздухе.

3. Гимнастика для глаз хорошо помогает при начинающей близорукости и способна несколько замедлить развитие близорукости средней степени. Ее проводят каждые 20-30 минут занятий, требующих напряжения глаз.

6. ВНИМАНИЕ! Если кто-то из родителей страдает близорукостью, для ребенка нужно тщательно выполнять все вышеуказанные рекомендации. Наследственность играет большую роль в развитии заболевания. В том случае, если оба родителя близоруки, риск возникновения заболевания возрастает до 60%. Если ребенок начинает жаловаться на ухудшение зрения, нужно немедленно показать его детскому офтальмологу.

источник

Роль состоянии соединительной ткани и нарушение минерального обмена в развитии компьютерного зрительного синдрома и близорукости

Соединительная ткань, подобно любой ткани, наряду с межклеточным веществом содержит клетки, которые не связаны с базальными мембранами, они покоятся или мигрируют непосредственно в толще межклеточного вещества. Межклеточный матрикс выполняет многообразные функции в разных органах, это, прежде всего, участие его в образовании тканей, создании их сложной микроархитектуры: в этих процессах межклеточный матрикс выполняет роль строительных лесов и каркаса, на котором формируется ткань, скрепляет, склеивает клетки друг с другом, поддерживает форму клеток и органов, придает тканям механическую прочность.

Соединительная ткань — развивающаяся из мезенхимы ткань животного организма, выполняющая опорную, трофическую, защитную и репаративную функцию. Особенностью строения соединительной ткани являются хорошо развитые межклеточные структуры (волокна и основное вещество). В зависимости от клеточного состава, строения и свойств межклеточных структур, их ориентации соединительную ткань подразделяют на собственно соединительную, костную и хрящевую ткань.

Собственно соединительная ткань представлена рыхлой и плотной волокнистой неоформленной и плотной волокнистой оформленной соединительной тканью. Наиболее распространенной соединительной тканью человека является рыхлая волокнистая ткань. Межклеточное вещество представлено волокнистыми структурами (коллагеновые, ретикулярные и эластические волокна) и основным веществом. Основное вещество представляет собой вязкий гель, состоящий в основном из макромолекул полисахаридов и большого количества тканевой жидкости. Полисахариды основного вещества представлены преимущественно гликозаминогликанами.

Гликозаминогликаны (ГАГ) — основной компонент нефиброзного матрикса соединительной ткани, в большом количестве присутствующие в хряще, кости, кровеносных сосудах, клапанах сердца, коже, сухожилиях, роговице.

ГАГ представляют собой гетерополисахариды, углеводный стержень которых построен из чередующихся остатков уроновой кислоты и гексозамина.

Гликозаминогликаны играют важную роль в поддержании структурной целостности соединительной ткани. Упругость соединительнотканных образований зависит от способности этих полиионных молекул удерживать воду и микроионы, включая более крупные молекулы, по принципу функционирования молекулярного «сита» (подобно дексграну). ГАГ выполняют роль смазки и выдерживают механические нагрузки (опорная функция) благодаря анионным зарядам (карбоксильные и сульфатные группы), которые захватывают воду так, что полимеры набухают.

Сульфированные гликозаминогликаны входят в состав соединений, содержащих белок и называемых протеогликанами. Молекулы протеогликанов в растворе «распушены» вследствие отталкивания одноименно заряженных сульфатированных цепей гликозаминогликанов, а также вследствие гидратации. Объем, занимаемый молекулами, значительно больше, чем объем самих полисахаридных и пептидных цепей. При увеличении давления объем, занимаемый молекулами, обратимо уменьшается: жидкость выжимается из промежутков между гликозамиигликановыми цепями, и они сближаются друг с другом. Поскольку цепи одноименно заряжены, сопротивление нарастает по мере сжимания молекул. Если давление снять, молекулы вновь принимают «распушенную» форму. Протеогликаны смягчают нагрузки, выполняя роль рессор. Коллагеновые волокна делают ткань прочной, а протеогликановый гель создает тургор.

Основным клинически значимым симптомом профессиональной офтальмопатии операторов ПЭВМ является миопия. Согласно работам Э.С. Аветисова, в основе возникновения и прогрессирования приобретенной близорукости лежат расстройства аккомодации и нарушение опорных свойств склеральной капсулы глаза. Указанные нарушения могут быть обусловлены, помимо генетических, рядом факторов внешней среды, приводящих к нарушениям гемодинамики, вегетативной иннервации, метаболизма оболочек и сред глаза. Взаимосвязь между биохимическими и биомеханическими изменениями в склере изучается в нашей стране и за рубежом. Исследования, проведенные в Московском НИИ глазных болезней им. Гельмгольца, показали, что при миопии понижен уровень коллагена, гликозаминогликанов и поперечных сшивок, стабилизирующих соединительнотканные структуры склеры, нарушен обмен микроэлементов, снижен модуль упругости, сокращен объем обратимых деформаций.

Близорукость — эго не просто нарушение в оптическом аппарате глаза, вследствие чего зрение вдаль понижается, а это расстройство во всем организме на уровне обменных процессов. В силу нарушения белкового и минерального обмена склера, выполняющая опорную функцию, растягивается в длину, определяя тем самым, возникновение осевой, то есть, истинной близорукости. Склеральный фактор играет определенную роль в развитии миопии. Склера или фиброзная оболочка глаза представляет собой разновидность соединительной ткани организма. Для всех типов соединительной ткани характерно наличие волокнистых структур — коллагеновых и эластических волокон. Основным волокнистым элементом склеральной оболочки является коллаген, составляющий около 70% массы ткани склеры. Механическое напряжение, прочность и упругость склеры, определяющие основную опорную ее функцию, зависят в основном от концентрации коллагена, архитектоники коллагеновых волокон. Однако, клинико-морфологические проявления, наблюдаемые при нарушении синтеза коллагена, свидетельствуют о системности поражения, поскольку соединительная ткань составляет строму всех органов. Для многих вариантов коллагенопатий характерны изменения со стороны кожи, костно-мышечной, сердечно-сосудистой и дыхательной систем, почек. Крымским Республиканским Медицинским Центром Реабилитации Зрения были обследованы 97 пациентов с миопией различной степени. Нарушение осанки были обнаружены в 100% случаев у пациентов со средней и высокой степенью близорукости, при слабой степени миопии в 70% обследований. Для сравнения в контрольной группе (гиперметропическая рефракция) у 57% пациентов выявлена патология осанки. Проведенные обследования дают основание считать миопию одним из проявлений общей несостоятельности соединительной ткани. В последнее время данные многих популяционных исследований свидетельствуют об увеличении количества соматических заболеваний, ассоциированных с дисплазией соединительной ткани (ДСТ). Дисплазия соединительной ткани не является нозологической единицей, а представляет собой генетически обусловленный системный проградиегттный процесс, который формирует внешние и внутренние фенотипические признаки диспластикозависимых нарушений функций органов и систем и служит фоном при ассоциированных заболеваниях. Выделены две группы этой патологии. К первой относят дифференцированные соединительно-тканные дисплазии. Они имеют определенный тип наследования и четко выраженную симптоматику. Это синдромы Марфана, Элерса-Данлоса, Холта-Омара, несовершенный остеогенез и эластическая псевдоксантома. Во вторую группу включены недифференцированные дисплазии соединительной ткани с локомоторными и висцеральными проявлениями без четко выраженной симптоматики.

Среди недифференцированных дисплазий различают сочетание внешних фенотипических признаков дисплазии и дисфункции вегетативной нервной системы с признаками дисплазии одного или нескольких внутренних органов, а также изолированную соединительнотканную дисплазию, при которой поражается один орган и внешние фенотипические признаки отсутствуют.

Системность поражения при ДСТ во многом связана со всеобъемлющим ее распространением в организме человека. Выделено большое количество фенотипических признаков ДСТ, которые условно разделяются на внешние, выделяемые при физическом обследовании, и внутренние — соединительнотканные поражения внутренних органов.

Фенотипические и органные диспластикозависимые проявления зависят от преимущественность поражения плотной или рыхлой соединительной ткани. Именно этим и объясняется нарушение формообразования костной и хрящевой тканей, поражений кожи, сосудистых и клапанных образований сердца, мочсвелделительной системы, глаза и других органов.

Патология органа зрения — распространенное явление при наследственной ДСТ. Кроме миопии различных степеней при недифференцированных формах ДСТ, отмечается дисплазия хрусталика, отслойка сетчатки, дегенеративные изменения на глазном дне, увеличение длины глазного яблока, глубокая передняя камера, иридодонез, плоская роговица.

О.Н. Кулешова (2007) в своих исследованиях изучала выраженность синдрома недифференцированной ДСТ у пациентов с первичной ювенильной глаукомой и миопией. Признаки неполноценности соединительной ткани определялись в различных сочетаниях, однако для всех обследованных характерны такие внешние особенности как изменения опорно-двигательного аппарата («плоская» спина, сколиоз функциональная нестабильность шейного отдела позвоночника (ФНШОП), плоскостопие), изменение кожи. При анализе полученных результатов обнаружено, что патология позвоночника имелась в 100% случаев («плоская» спина — 32%, сколиоз — 84%, нестабильность шейного отдела позвоночника у 96% обследованных); плоскостопие — 100% случаев и изменения кожи в виде стрий, лейкоиихий, множественных родинок у 48% больных.

Структурные изменения органов и систем сопровождаются их функциональной неполноценностью, снижением адаптационно-приспособительных реакций и стрессовой устойчивости организма. Процесс соединительнотканной дисплазии, создавая предпосылки для формирования структурных и функциональных нарушений как систем организма в целом, так и в склеральной оболочке и мышечном аппарате глаза, приводит к развитию миопии. Синдром ДСТ является значительным фактором риска повышенной заболеваемости миопией.

ДСТ морфологически характеризуется изменениями коллагеновых, эластических фибрилл, гликопротеидов, протеогликанов и фибробластов, в основе которых лежат наследуемые мутации генов, кодирующие синтез и пространственную организацию коллагена, структурных белков и белково-углеводных комплексов, а также мутации генов ферментов и кофакторов к ним. При дисплазии соединительной ткани в 46,6-72,0% выявляется дефицит магния в волосах, эритроцитах и других субстратах. По мнению Г.И. Нечаевой, В.М. Яковлева, В.П. Конева (2008) гипомагниемия может иметь патогенетическое значение в развитии этого синдрома. У здорового человека концентрация магния в сыворотке крови поддерживается в диапазоне (0,7-1,1 ммоль/л). Дефицит магния может сопровождаться вторичными ион-дефицитами: гипокалиемией, гипокальциемией. Хронический дефицит магния может приводить к общему снижению тонуса мускулатуры, резко выраженной астенизации, вплоть для формирования синдрома хронической усталости. А.А. Спасов (2000) в своей монографии подробно описал биохимическую роль магния в обменных процессах человека. В частности он отмечал, что магний наряду с калием является самым распространенным катионом интрацеллюлярной жидкости, обладает большой связывающей энергией и способствует компдексообразованию. В этом и заключается роль магния, как основного модулятора метаболических и функциональных процессов. При исследовании активности ферментов было установлено, что она зависит от взаимоотношений концентрации ионов цинка и магния, и оба металла вместе намного сильнее активируют ряд ферментов, принимающих участие в гликолизе, чем каждый из них в отдельности. Оба катиона в соответствующих концентрациях необходимы для образования структуры тРНК. Матий является необходимым элементом для агрегации субедиииц рибосомной рибонуклеиновой кислоты (в случае низкой концентрации иона магния агрегация не происходит) и таким образом существенно влияет на синтез белка.

Ключевая роль повышенной активности процессов перекисного окисления липидов (ПОЛ) в развитии глазных заболеваний в настоящее время не подвергается сомнению. Хорошо известно, что при воздействии неблагоприятных факторов происходит активация свободно-радикальных реакций с образованием вторичных радикалов, оказывающих повреждающее действие на клеточные мембраны. Система антиоксидантной защиты с помощью сложных и разнообразных механизмов регуляции препятствует генерации свободных радикалов или инактивирует вторичные продукты ПОЛ, предотвращая тем самым развитие различных патологических состояний.

Многие отечественные и зарубежные авторы публиковали в своих работах данные о снижении общей антиокислительной функции крови и изменении ее ферментативной активности при прогрессирующей близорукости, Необходимым звеном в системе антиоксидантной защиты являются некоторые микроэлементы, значение которых в жизнедеятельности клеток и поддержании постоянства внутренней среды организма чрезвычайно велико и многообразно, и не уступает роли витаминов. Существенная важность жизненно необходимых микроэлементов в их оптимальных дозах в том, что каждый из них активирует определенную группу ферментов.

Многочисленные исследования показали, что цинк, медь, железо, магний, кальций, кобальт, никель, марганец, барий и другие микроэлементы постоянно присутствуют во всех структурах здорового глаза.

Цинк принимает участие в синтезе белков, в частности коллагена, основного протеина склеральной оболочки глаза, растяжение которой является ведущим патогенетическим звеном прогрессирования миопии (Е.Н. Иомдина, 2000). Концентрация цинка в биологических жидкостях и тканях тесно взаимосвязана с содержанием микроэлемента — биотика — меди. Участие медь-зависимого фермента супероксиддисмутазы в механизме защиты от повреждающего действия ПОЛ и активных форм кислорода является одной из самых важных функциональных ролей меди.

Второй не менее фундаментальной функцией меди считается участие медьсодержащего фермента лизил-оксидазы в формировании поперечных связей коллагена, то есть в процессе его биосинтеза и созревания, что весьма важно для поддержания нормальной опорной функции склеры.

Роль микроэлементов в развитии близорукости изучал Р.В. Бойчук, (1969). Оказалось, что при близорукости понижается содержание меди и железа в крови. Оба элемента входят в состав большого количества ферментов, принимающих участие в тканевом дыхании. Установлено, что медь как составная часть фермента аскорбиноксидазы способна оказывать влияние на содержание и биологическую активность аскорбиновой кислоты. Для нормального формирования соединительной ткани необходима определенная концентрация аскорбиновой кислоты. Витамин С непосредственно участвует в образовании коллагена и его дериватов, входящих в состав межуточного вещества. Гиповитаминоз С может быть одной из причин неполноценного формирования коллагена склеры. Изменение концентрации витамина С в организме пагубно сказывается и на обмене железа. В норме железо доставляется в ткани по мере потребности с помощью белка — трансферрина. Способность трансферрина насыщаться железом обусловлена потребностью тканей в нем. При понижении биологического окисления в организме насыщенность трансферрина падает. В исследованиях Р.В. Бойчук показано, что у близоруких насыщенность трансферрина железом понижена почти в 2 раза Активное участие железа в окислительно-восстановительных процессах отмечают также М.Г. Ефимова, И.Л. Остапенко, Р.Н. Этингоф (1987). В системе антиоксидантной защиты клеток участвует магний, повышающий резистентность к свободнорадикальному окислению.

Читайте также:  Близорукость и бокс противопоказания

Снижение концентрации кальция, возможно, связано с нарушением его усвоения.

Современные исследования минерального обмена у пользователей ПЭВМ, работающих на компьютере более 4 часов в рабочую смену и имеющих компьютерный зрительный синдром, показали нарушение этого обмена. Е.М. Власовой (2006) обнаружено снижение содержания уровня кальция и магния в плазме крови, нарастающее с увеличением стажа и выраженности компьютерного зрительного синдрома.

источник

Рассматриваются вопросы диагностики дсиплазии соединительной ткани (ДСТ) у детей, фундаментальные молекулярно-биологические механизмы взаимосвязи ДСТ и дефицита магния, а также подходы к терапии ДСТ у детей.

Are examined questions of diagnostics of connective tissue dysplasia (CTD) in children, fundamental molecular-biological mechanisms of relationship CTD and of deficiency of magnesium, and also approaches to therapy CTD in children.

Соединительная ткань, которая составляет около 50% всей массы тела и скрепляет воедино все ткани организма, формируется с первых дней жизни плода. При дефиците компонентов, из которых строится соединительная ткань, возникают серьезнейшие аномалии развития. При выраженном дефиците «строительных материалов» соединительной ткани эти аномалии несовместимы с жизнью уже во внутриутробном периоде (замершая беременность и пр.). При менее выраженном дефиците ребенок рождается жизнеспособным, но характеризуется дисморфизмами и более низкими показателями массы тела и роста.

Поэтому нарушения структуры соединительной ткани (или дисплазии соединительной ткани, ДСТ) способствуют развитию самых разнообразных заболеваний, казалось бы, не имеющих ничего общего с патологией у детей и подростков: сколиоза и варикозного расширения вен, «школьной» миопии и нефроптоза, пролапса митрального клапана и плоскостопия, равно как и многих других. Очевидно, что все эти заболевания объединяет в некотором роде «слабая», недостаточно сформированная соединительная ткань. Механически слабая соединительная ткань — основа морфофункциональных изменений не только при сколиозе, остеопорозе и других патологиях хрящевой и костной ткани, но и при сердечно-сосудистых и цереброваскулярных заболеваниях. Структурная неполноценность и сниженная регенеративная способность соединительной ткани сосудов определяют повышение уровней хронического воспаления, меньшую эффективность традиционных схем лечения, более длительный период восстановления и т. д. [1].

Соединительная ткань отличается от любого другого типа ткани избытком внеклеточного матрикса. Внеклеточный матрикс состоит из основного вещества (протеогликаны), механически усиленного волокнами трех типов: 1) коллагенoвых волокон (состоящих главным образом из коллагена I типа), 2) гибких волокон (состоящих в основном из эластина и фибриллинов) и 3) сетчатых (или ретикулярных) волокон (коллаген III типа). Следует отметить, что в синтезе этих компонентов соединительной ткани принимают участие магнийзависимые ферменты. Кроме того, магний регулирует секрецию паратгормона, метаболизм витамина D и потенцирует эффекты витамина D в костной ткани, что важно для терапии и профилактики витамин-D-резистентного рахита [2]. Поэтому дефицит магния провоцирует и обостряет диспластические процессы в соединительной ткани, ухудшая ее прочность и эластичность [3–5]. Взаимосвязь между диспластическими процессами в соединительной ткани и дефицитом магния особенно актуальна у детей, постоянно находящихся в периоде активного роста.

Имеющиеся на настоящий момент данные свидетельствуют, что встречаемость ДСТ зависит от возраста обследованных лиц. Процессы роста у детей текут неравномерно. Выделяют несколько периодов наиболее интенсивного роста: 1-й год жизни, период подготовки к школе (5–7 лет), период так называемого подросткового «рывка» (11–15 лет). В каждом из этих переходных периодов ДСТ проявляется по-разному. В 1-й год жизни при ДСТ чаще всего обнаруживаются рахит, гипотония мыщц, гипермобильность суставов; в период подготовки к школе часто стартуют миопия и плоскостопие; в период подросткового «рывка» — сколиоз, деформации грудной клетки и позвоночника, стрии бедер и живота, пролапс митрального клапана [6]. В подростковом возрасте прирост количества признаков дисморфогенеза соединительной ткани может составлять более 300% [7].

Следует отметить, что максимально интенсивный рост наблюдается у недоношенных детей и детей с низким весом при рождении. Эти дети составляют группу риска по развитию ДСТ [1]. Учитывая раннюю постановку таких детей на учет, у врача и его развивающегося пациента имеется большой резерв времени для организации комплексной программы реабилитации, включающей кинезотерапию, занятия спортом и полноценное питание.

Адекватный рацион питания обязательно включает достаточное обеспечение ребенка всеми микронутриентами, которые являются строительными материалами соединительной ткани. Принимая во внимание повсеместное распространение среди детей диетарных дефицитов микронутриентов, прежде всего магния, становится очевидной необходимость использования эффективных и безопасных препаратов органического магния. При ДСТ курсы магниевой терапии должны быть достаточно длительными (не менее 6 месяцев).

Далее рассматриваются вопросы диагностики ДСТ у детей, фундаментальные молекулярно-биологические механизмы взаимосвязи ДСТ и дефицита магния, а также подходы к терапии ДСТ у детей.

Дисплазия соединительной ткани — генетически и нутрициально детерминированное состояние, обусловленное нарушениями метаболизма соединительной ткани в эмбриональном и постнатальном периодах и характеризующееся аномалиями структуры компонентов внеклеточного матрикса (волокон и основного вещества) с прогредиентными морфофункциональными изменениями различных систем и органов.

Осмотр ребенка неонатологом уже сразу после рождения позволяет установить ряд характерных фенотипических проявлений ДСТ. Условно их можно разделить на группы в зависимости от локализации органов и систем, вовлеченных в диспластический процесс. Перечисленные ниже отдельно взятые признаки не являются строго специфичными для ДСТ и нуждаются в клинической оценке и проведении при необходимости уточняющего дифференциально-диагностического анализа.

1. Костно-суставные изменения:

  • астенический тип конституции;
  • долихостеномелия;
  • арахнодактилия;
  • деформации грудной клетки (воронкообразные и килевидные);
  • деформации позвоночника (сколиоз, синдром прямой спины, гиперкифоз, гиперлордоз, спондилолистез);
  • деформации черепа (акроцефалия, арковидное небо, микрогнатия, скученность зубов);
  • деформации конечностей (вальгусная, варусная);
  • деформации стопы (плоскостопие, полая стопа и др.);
  • гипермобильность суставов.

2. Изменения кожи и мышц:

  • растяжимая кожа;
  • тонкая кожа;
  • вялая кожа;
  • заживление в виде «папиросной бумаги»;
  • келлоидные рубцы;
  • геморрагические проявления (экхимозы, петехии);
  • мышечная гипотония и/или гипотрофия;
  • грыжи.

3. Признаки ДСТ органа зрения:

  • миопия;
  • плоская роговица;
  • подвывих (вывих) хрусталика.

4. Признаки ДСТ сердечно-сосудистой системы:

  • пролапсы клапанов сердца;
  • миксоматозная дегенерация клапанных структур сердца;
  • дилатация фиброзных колец сердца;
  • расширение корня аорты;
  • аневризмы межпредсердной, межжелудочковой перегородки сердца;
  • расширение и аневризмы сосудов (аорта, легочная артерия, церебральные артерии);
  • варикозное расширение вен, флебопатии.

5. Признаки ДСТ бронхолегочной системы:

  • трахеобронхомаляция, трахеобронхомегалия;
  • трахеобронхиальная дискинезия;
  • бронхоэктазы;
  • апикальные буллы и первичный спонтанный пневмоторакс.

6. Признаки ДСТ пищеварительной системы:

  • моторно-тонические нарушения (рефлюксы);
  • нарушения фиксации органов (гастроптоз, колоноптоз);
  • изменения размеров и длины полых органов (мегаколон, долихосигма и др.).

7. Признаки ДСТ мочевыделительной системы:

8. Признаки ДСТ системы крови:

  • тромбоцитопатии, коагулопатии;
  • гемоглобинопатии.

9. Признаки ДСТ нервной системы:

Следует отметить, что в Международной классификации болезней (МКБ-10) недифференцированные варианты ДСТ не выделены в отдельную рубрику, что, несомненно, затрудняет работу практического врача. Однако при внимательной работе с классификацией можно найти соответствующий код для любого проявления ДСТ. Например, диагнозы «I34.1 Пролапс митрального клапана», «I71.2 Аневризма и расслоение аорты», «I83 Варикозное расширение вен нижних конечностей» в рубрике I00–99 «Болезни системы кровообращения» отчетливо характеризуются нарушениями структуры соединительной ткани. Другие примеры: «H52.1 Миопия», «H27.1 Подвывих (вывих) хрусталика», «К07 Аномалии прикуса», «K40 Паховая грыжа», «K41 Бедренная грыжа» и т. д. Поэтому ДСТ отнюдь не ограничивается диагнозами в рубрике М00–99 «Болезни костно-мышечной системы и соединительной ткани» («М35.7 Гипермобильный синдром», «M40.0 Кифоз позиционный» и другие).

Обследование пациентов с ДСТ проводится в строгой последовательности, в соответствии со следующими задачами:

  • выявление малых аномалий развития и пороков развития;
  • выявление фенотипических признаков ДСТ;
  • дифференциальная диагностика синдромных и несиндромных форм;
  • оценка степени прогредиентности течения;
  • определение риска развития осложнений течения, возникновения ассоциированной патологии, внезапной смерти;
  • оценка степени трудоспособности.

Поиск фенотипических признаков ДСТ должен проводиться при физикальном обследовании целенаправленно и последовательно. Более подробная информация о диагностике ДСТ, крайне важная для практического врача, приведена в монографии Нечаевой Г. И. с соавт., 2010 [1].

Понимание роли магния в поддержании структуры соединительной ткани не отделимо от молекулярно-клеточной структуры соединительной ткани. В молекулярной биологии внеклеточный матрикс (ВКМ) определен как сложная сеть, сформированная многочисленными структурными макромолекулами (протеогликаны, коллагены, эластин). Взаимодействуя друг с другом и с клетками, они поддерживают структурную целостность тканей [8]. Соединительная ткань демонстрирует избыток ВКМ при достаточно небольшом числе клеток. Именно ВКМ помогает держать клетки вместе и обеспечивает организованную среду, в пределах которой мигрирующие клетки могут перемещаться и взаимодействовать друг с другом.

Внеклеточный матрикс состоит из принципиально необходимых компонентов — основного вещества, коллагеновых, эластиновых волокон. Наиважнейший элемент ВКМ — это основное вещество, формируемое протео­гликанами — чрезвычайно растянутыми полипептидными цепями, соединенными с многочисленными полисахаридными молекулами глюкозаминогликанов посредством прочных ковалентных связей.

Многочисленные цепи протеогликанов прикрепляются к особому виду глюкозаминогликана — полимеру гиалуроновой кислоты, называемому гиалуронаном. Нити гиалуронана помогают скреплять структуру основного вещества в единое целое. Это препятствует сжатию и растяжению ВКМ, а также обеспечивает быструю диффузию питательных веществ и гормонов к клеткам соединительной ткани. Гиалуронан синтезируется посредством гиалуронансинтетаз (гены HAS1, HAS2 и HAS3) и деградируется посредством гиалуронидаз (гены HYAL2, HYAL3, HYAL4 и HYALP). Гиалуронансинтетазы HAS1, HAS2 и HAS3 содержат ион магния в активном центре. Дефицит магния приводит к снижению активности гиалуронансинтетаз и, как следствие, к ухудшению механических свойств нитей гиалуронана в основном веществе внеклеточного матрикса [1, 4].

Ферменты, участвующие в биохимических модификациях и присоединении глюкозаминогликанов, также могут значительно влиять на структуру ВКМ. Например, дефицит ксилозил-бета-1,4-галактозилтрансферазы-7 (ген B4GALT7) связан с одной из форм ДСТ — синдрома Элерса–Данло [1] который проявляется склонностью к вывихам, наличием хрупкой или гиперэластичной кожи, хрупких сосудов и т. д. [1].

Коллагеновые волокна придают соединительной ткани прочность и долговечность. Каждое коллагеновое волокно составляет несколько микрометров в диаметре и состоит из тысяч индивидуальных полипептидных цепей коллагена, плотно упакованных вместе. Следует отметить, что дисплазии соединительной ткани чаще всего возникают не столько из-за генетических дефектов в коллагене, сколько вследствие дефектов в десятках генов, влияющих на биосинтез, посттрансляционные модификации, секрецию, самосборку и ремоделирование коллагеновых волокон. Например, лизилоксидаза (ген LOX), а также лизилоксидазоподобные ферменты (гены LOXL1, LOXL2, LOXL3 и LOXL4) осуществляют поперечную сшивку полипептидных цепей коллагена, таким образом усиливая механическую прочность фибрилл. Дефицит активности лизилоксидазы обнаруживается у пациентов с синдромом Элерса–Данло [10].

Было показано, что магний способствует снижению уровня активности матриксных металлопротеиназ (ММП) (Ueshima K., 2003). Соответственно, дефицит магния приводит к увеличению суммарной активности ММП и более агрессивной деградации коллагеновых волокон, что также ухудшает механическую прочность соединительной ткани. Эксперименты подтверждают влияние магния на биологическую активность ММП. У мышей с искусственно вызванным дефицитом магния стенка аорты значительно тоньше, чем у контрольных животных. Эти изменения коррелируют с повышением общей активности металлопротеиназ MMP2 и MMP9 [11]. Вероятно, эффект магния в уменьшении активности MMP2 блокируется двумя тирозинкиназными ингибиторами — генистеином и гербимицином. Это позволяет предположить, что внеклеточный магний уменьшает секрецию ММП через внутриклеточный сигнальный каскад, который включает определенную тирозинкиназу [12]. Дополнение диеты фолиевой кислотой и солями магния уменьшает секрецию MMP2 и оказывает положительное влияние, в частности, на течение и прогноз ишемической болезни сердца (ИБС) [13].

Клетки (фибробласты, хондробласты, остеобласты) — активный компонент соединительной ткани. Именно клетки синтезируют элементы внеклеточного матрикса (протеогликаны, коллагеновые, эластиновые волокона, фибронектин и др.) и поддерживают структурную целостность соединительной ткани. Клетки также секретируют все ферменты, необходимые для формирования и ремоделирования соединительной ткани (металлопротеиназы и др.).

Следует отметить значимое влияние микроэлементов, в частности ионов магния, на процессы синтеза клетками соединительной ткани. В частности, ионы Mg 2+ стабилизируют структуру транспортной РНК (тРНК), а дефицит магния приводит к увеличению числа дисфункциональных молекул тРНК, таким образом снижая и замедляя общую скорость белкового синтеза. В исследованиях было показано, что низкое содержание магния стимулирует преждевременную смерть эндотелиоцитов и фибробластов в культуре [14]. Другими возможными механизмами влияния магния являются повышение активности металлопротеиназ-эластаз (деградирующих эластичные волокна), трансглутаминазы (формирующей поперечные глутамин-лизиновые сшивки эластина), лизилоксидазы (поперечная сшивка цепей эластинов и/или коллагенов), гиалуронидаз (деградирующих гиалуронан). Эти механизмы суммированы на рис. 1.

Читайте также:  Аккомодация глаза близорукость и дальнозоркость

Положительное влияние магния на структуру соединительной ткани подтверждается результатами недавно проведенного нами экспериментального исследования на моделях ран и ожогов [15]. Результаты экспериментального исследования эффектов органической соли магния (магния лактат дигидрат) на эпителиализацию ран и ожогов показали, что прием органического магния внутрь стимулирует более эффективное и быстрое заживление ран по сравнению со стандартной терапией солкосерилом. По результатам гистологических анализов тканей рубца в различных группах животных прием магния предотвращает избыточное разрастание коллагеновых фибрилл, способствует росту эластиновых волокон, росту числа фибробластов соединительной ткани и формированию полноценнного основного вещества, что в целом приводит к повышению гистологического качества рубца.

Вклад наследственности в развитие мультифакториального заболевания, к которым относится и ДСТ, составляет не более 20%. На долю экологических воздействий и возможности клинической медицины в улучшении здоровья приходится около 30%, а основное значение (50%) при развитии заболевания имеет образ жизни пациента [1]. С клинической и прогностической точки зрения несиндромные дисплазии подразделяются на три отчетливо различимые группы, что требует дифференцированного подхода к реализации лечебно-профилактических технологий (рис. 2).

В абсолютном большинстве случаев основная задача наблюдения пациентов молодого возраста — сохранение здоровья и предупреждение прогрессирования диспластических процессов. Главными подходами к лечению пациентов с ДСТ являются рациональная диетотерапия, метаболическая терапия, физиотерапия, лечебный массаж, индивидуально подобранная лечебная физкультура и плавание. При отсутствии значительных функциональных нарушений детям с ДСТ показан общий режим с правильным чередованием труда и отдыха, целесо­образны утренняя гимнастика, чередование умственной и физической активности, прогулки на свежем воздухе, полноценный ночной сон, короткий отдых днем. Предпочтительны динамические нагрузки (плавание, ходьба, прогулочные лыжи, велосипед, бадминтон, гимнастика ушу) и нецелесообразны занятия балетом и танцами, групповые игровые виды спорта, связанные с большой вероятностью травм.

Важным направлением лечения пациентов с ДСТ является рациональная диетотерапия. Ее основной целью считается предоставление организму в достаточном количестве микронутриентов (витаминов, микроэлементов, витаминоподобных веществ и др.), необходимых для поддержания здорового метаболизма соединительной ткани. Диетотерапия дополняется медикаментозным лечением с использованием витамино-минеральных комплексов и моноформ витаминных (витамины D, С, и др.) и/или минеральных препаратов (моноформы магния, цинка, меди, марганца, бора и др.). Особенно следует отметить роль витаминов С, Е, В6 и D.

Среди микроэлементов магний, медь и марганец особенно важны для поддержания физиологического метаболизма соединительной ткани. Для структуры соединительной ткани крайне важна роль магния, который является одним из основных биоэлементов, обеспечивающих физиологический метаболизм соединительной ткани [3].

При коррекции глубокого магниевого дефицита трудно обойтись только диетой и часто требуется фармакотерапия. Исследования бионакопления при использовании различных препаратов магния дали основание утверждать, что биодоступность органических солей магния почти на порядок выше, чем неорганических [16]. При этом органические соли магния не только значительно лучше усваиваются, но и легче переносятся больными. Неорганические соли магния чаще дают диспептические осложнения, такие как диарея, рвота, рези в животе [17]. Лечение эффективнее, если вводят одновременно и магний, и магнезиофиксатор (витамины В6, В1, Глицин).

Среди препаратов, используемых для коррекции магниевого дефицита, препарат Магне В6 имеет разрешение для применения в педиатрии. Форма Магне В6 в виде раствора для приема внутрь разрешена к приему у детей с первого года жизни (масса тела более 10 кг) в дозе 1–4 ампул в сутки. Таблетки Магне В6 и Магне В6 Форте разрешены детям старше 6 лет (масса тела более 20 кг) в дозе 4–6 таблеток в сутки.

Следует подчеркнуть, что диетотерапия у пациентов с ДСТ является составной частью комплексной программы лечения соответствующего «основного» проявления ДСТ у данного пациента [1, 7]. Например, в случае пролапса митрального клапана (ПМК) ортостатическую симптоматику (постуральная гипотензия и сердцебиение) можно уменьшить повышением потребления жидкости и соли, ношением компрессионного белья, в тяжелых случаях приемом минералокортикоидов [4]. Прием ацетилсалициловой кислоты (75–325 мг/сут) показан пациентам с ПМК с транзиторными ишемическими атаками при синусовом ритме и без тромбов в левом предсердии. Антибиотики для профилактики инфекционного эндокардита при всех манипуляциях, сопровождающихся бактериемией, назначают пациентам с ПМК, в особенности при наличии митральной регургитации, утолщении створок, удлинении хорд, дилятации левого желудочка или предсердия [4].

Имеются литературные данные об эффективности препаратов магния при первичном ПМК [3, 5]. Было показано, что через шесть месяцев регулярного приема препарата органического магния не только нормализовывалась частота сердечных сокращений и уровень артериального давления, снижалось число эпизодов нарушений ритма, но и достоверно уменьшался тремор и глубина пролабирования створок митрального клапана [18].

Дисплазия соединительной ткани объединяет такие заболевания детей и подростков, как сколиоз, рахит, плоскостопие, нарушения фиксации органов (гастроптоз, нефроптоз, колоноптоз), пролапс митрального клапана, миопия и другие. Особого внимания заслуживает то, что ДСТ в детстве является патофизиологической основой формирования сердечно-сосудистых и цереброваскулярных заболеваний у взрослых. Таким образом, ДСТ в детстве предрасполагает к сокращению продолжительности жизни и ухудшению качества жизни во взрослом возрасте. Имеющиеся данные фундаментальной и клинической медицины позволяют предположить, что ДСТ является одной из клинических форм проявления первичного магниевого дефицита [1, 3]. Поэтому использование препаратов магния можно рассматривать как средство патогенетического лечения ДСТ. Чем раньше начата нутрициальная поддержка на фоне современного магний-дефицитного питания, тем лучше.

  1. Нечаева Г. И., Викторова И. А., Громова О. А., Вершинина М. В., Яковлев В. М., Торшин И. Ю. с соавт. Дисплазии соединительной ткани у детей и подростков. Инновационные стационар-сберегающие технологии диагностики и лечения в педиатрии. М., 2010.
  2. Paunier L. Effect of magnesium on phosphorus and calcium metabolism // Monatsschr Kinderheilkd. 1992, Sep; 140 (9 Suppl 1): S17–20.
  3. Торшин И. Ю., Громова О. А. Молекулярные механизмы магния и дисплазии соединительной ткани // Росс. мед. журнал. 2008, с. 263–269.
  4. Торшин И. Ю., Громова О. А. Полиморфизмы и дисплазии соединительной ткани // Кардиология, 2008; 48 (10): 57–64.
  5. Громова О. А., Торшин И. Ю. Магний и пиридоксин: основы знаний. 2-е издание. М., Миклош, 2012, 300 с.
  6. Нечаева Г. И., Яковлев В. М., Конев В. П., Дубилей Г. С., Викторова И. А., Глотов А. В., Новак В. Г. Клиника, диагностика, прогноз и реабилитация пациентов с кардиогемодинамическими синдромами при дисплазии соединительной ткани // Международный журнал иммунореабилитации. 1997; 4: 129.
  7. Викторова И. А. Методология курации пациентов с дисплазией соединительной ткани семейным врачом в аспекте профилактики ранней и внезапной смерти: Дис. … докт. мед. наук. Омск, 2005. 432 с.
  8. Alberts B., Johnson A., Lewis J., Raff M., Roberts R., Walter P. Molecular Biology of the Cell, 4 th edition // Garland Science, 2002, ISBN 0815340729.
  9. Okajima T., Fukumoto S., Furukawa K., Urano T. Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene // J Biol Chem. 1999, Oct 8; 274 (41): 28841–28844.
  10. Di Ferrante N., Leachman R. D., Angelini P., Donnelly P. V., Francis G., Almazan A. Lysyl oxidase deficiency in Ehlers-Danlos syndrome type V // Connect Tissue Res. 1975; 3 (1): 49–53.
  11. Pages N., Gogly B., Godeau G., Igondjo-Tchen S., Maurois P., Durlach J., Bac P. Structural alterations of the vascular wall in magnesium-deficient mice. A possible role of gelatinases A (MMP-2) and B (MMP-9) // Magnes Res. 2003; 16 (1): 43–48.
  12. Yue H., Lee J. D., Shimizu H., Uzui H., Mitsuke Y., Ueda T. Effects of magnesium on the production of extracellular matrix metalloproteinases in cultured rat vascular smooth muscle cells // Atherosclerosis. 2003, Feb; 166 (2): 271–277.
  13. Guo H., Lee J. D., Uzui H., Yue H., Wang J., Toyoda K., Geshi T., Ueda T. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells // Circ J. 2006, Jan; 70 (1): 141–146.
  14. Killilea D. W., Maier J. A. M. A connection between magnesium deficiency and aging: new insights from cellular studies // Magnesium Research. 2008; 21 (2): 77–82.
  15. Жидоморов Н. Ю., Суракова Т. А., Гришина Т. Р. с соавт. Перспективы использования препарата Магнерот в эстетической медицине // Эстетическая медицина. 2011, т. 10, № 4, с. 3–13.
  16. Coudray C., Feillet-Coudray C., Rambeau M., Tressol J. C., Gueux E., Mazur A., Rayssiguier Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: a stable isotope study // J Trace Elem Med Biol. 2006; 20 (2): 73–81. Epub 2005, Dec 20.
  17. Grimes D. A., Nanda K. Magnesium sulfate tocolysis: time to quit // Obstet Gynecol. 2006 Oct; 108 (4): 986–989.
  18. Domnitskaia T. M., D’iachenko A. V., Kupriianova O. O., Domnitskii M. V. Clinical value of the use of organic magnesium in adolescents with syndrome of cardiac connective tissue dysplasia // Kardiologiia. 2005; 45 (3): 76–81.

А. Г. Калачева*, **, кандидат медицинских наук
О. А. Громова*, **, доктор медицинских наук, профессор
Н. В. Керимкулова*, **, кандидат медицинских наук, доцент
А. Н. Галустян***, кандидат медицинских наук, доцент
Т. Р. Гришина*, **, доктор медицинских наук, профессор

* Российский сателлитный центр института микроэлементов ЮНЕСКО, Москва
** ГБОУ ВПО ИГМА Минздравсоцразвития России, Иваново
*** ГБОУ ВПО СЗГМУ им. И. И. Мечникова Минздравсоцразвития России, Санкт-Петербург

источник

По данным многих авторов склеральный фактор играет определенную роль в развитии близорукости. Известно, что склера или фиброзная оболочка глаза представляет собой разновидность соединительная ткань организма. Помимо основной — структурообразующей функции соединительной ткани она выполняет ряд важных функций: поддерживает водно-солевое равновесие, участвует в иммунологической защите организма, заживлении ран, переломов костей. Для всех типов соединительной ткани характерно наличие волокнистых (фибриллярных) структур — коллагеновых, эластических ее ретикулиновых волокон. Основным волокнистым элементом склеры является коллаген, составляющий около 70% массы ткани склеры. Механическое напряжение, прочность и упругость склеры, определяющие основную опорную ее функцию, зависят в основном от концентрации коллагена, архитектоники коллагеновых волокон. Однако, клинико-морфологические проявления, наблюдаемые при нарушениях синтеза коллагена, свидетельствуют о системности поражения, поскольку соединительная ткань составляет строму всех органов. Так, для многих вариантов коллагенопатий характерны изменения со стороны кожи, костно-мышечной, сердечно-сосудистой и дыхательной систем, почек.

В связи с вышеперечисленным нами была поставлена цель определить корреляцию между наличием миопии, ее степенью и деформацией позвоночника, как наиболее характерного показателя функциональной и морфологической достаточности соединительной ткани.

Материалы и методы. Нами обследовано 97 пациентов с миопией различной степени. Помимо стандартного офтальмологического обследования осуществлялась диагностика деформации позвоночника на аппарате «Вертеброметр».

Нами с целью получения простого доступного каждому лечебному учреждению недорогого аппарата, позволяющего с достаточной степенью точности определить качественно и количественно цифровые характеристики осанки человека, форму и деформацию позвоночника, в т.ч. скручивание (торсию) его, тем самым диагностировать сколиоз, был разработан и создан опытный образец аппарата — «Вертеброметр» (рац. предложение №18 от 14.09. 2004г.).

Все пациенты были разделены на пять групп: три группы — это пациенты с миопией различных степеней, 4я группа — с миопическим астигматизмом и пятая — контрольная группа с гиперметропической рефракцией.

Результаты и обсуждения. Результаты исследования сведены в таблицу. Как видно из таблицы нарушение осанки имелись в 100% случаев у пациентов, страдающих миопией средней и высокой степени, а также миопическим астигматизмом. Более благоприятная картина наблюдалась при близорукости слабой степени: нарушения осанки отмечались в 69% случаев, причем у мальчиков несколько чаще (в 71,4%) чем у девочек (в 67,6%).

Миопия сл. ст. Миопия ср. ст. Миопия выс. ст. Миопич. ast Контр. группа
Всего Всего 55 5 3 6 28
Мальчики 21 2 2 4 14
Девочки 34 3 1 2 14
Нар. осанки Всего 38 5 3 6 16
Мальчики 15 2 2 4 8
Девочки 23 3 1 2 8

Для сравнения в группе контроля нарушения осанки встречались в 57% случаев с равной частотой среди мальчиков и девочек.

Таким образом, проведенные исследования дают основание считать миопию одним из проявлений общей несостоятельности соединительной ткани — коллагенопатии, требующей при выборе медикаментозного лечения комплексного подхода не только офтальмолога, но, безусловно, ортопеда, педиатра, эндокринолога.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *