Меню Рубрики

Зрение аккомодация близорукость дальнозоркость

Нередко наш глаз сравнивают с фотоаппаратом. Роль объектива в нем выполняют роговица и хрусталик: они пропускают и преломляют лучи света, попадающие в глаз, а роль фотопленки отведена сетчатой оболочке: на которой, благодаря фоторецепторам, возникает изображение. Затем оно преобразуется в нервные импульсы и по зрительному нерву, как по проводам, передается в головной мозг. Изображение будет четким, если роговица и хрусталик преломляют лучи так, что фокус (точка соединения лучей) находится на сетчатке. Именно поэтому здоровые люди хорошо видят вдаль.

Близорукость (миопия) — это нарушение зрения, при котором человек хорошо видит предметы, расположенные вблизи, а удаленные от него — плохо. К сожалению, близорукость весьма распространена, она встречается как у детей, так и у взрослых. По данным ВОЗ 800 миллионов людей на планете страдают близорукостью. При близорукости лучи света собираются в фокус перед сетчаткой, и изображение получается нерезким, размытым.

Это может происходить по двум причинам: роговица и хрусталик слишком сильно преломляют лучи света; глаз при своем росте чрезмерно удлиняется, и сетчатка удаляется от нормально расположенного фокуса. Нормальная длина глаза взрослого человека — 23-24 мм, а при близорукости она достигает 30 мм и более. Удлинение глаза на каждый миллиметр приводит к увеличению близорукости на 3 диоптрии.

Различают три степени близорукости:

  • слабая степень близорукости — до 3 диоптрий;
  • средняя степень — от 3 до 6 диоптрий;
  • близорукость высокой степени — свыше 6 диоптрий.

Существует много причин, вызывающих возникновение близорукости. Но главными из них врачи считают следующие: длительная зрительная нагрузка на близком расстоянии (чрезмерная зрительная работа без отдыха, при плохом освещении); наследственная предрасположенность; особенность строения глазного яблока и обмена веществ в нем; ослабленная склера, которая не оказывает должного сопротивления чрезмерному росту глаза; недостаточно развитая аккомодационная мышца глаза, которая отвечает за «настрой» хрусталика на разные расстояния; перенапряжение ослабленной мышцы также может привести к близорукости.

Как правило, близорукость развивается уже в детском возрасте и становится достаточно заметна в школьные годы. Дети начинают хуже видеть удаленные предметы, плохо различают буквы и цифры, написанные на классной доске, стараются сесть поближе к телевизору, на первые ряды в кинотеатре. При попытке рассмотреть удаленные предметы близорукие люди нередко прищуривают глаза. Кроме ухудшения зрения вдаль, при близорукости нарушается также зрение в сумерках: в вечернее время близоруким людям трудно ориентироваться на улице, управлять автомобилем. Для улучшения зрения близорукие люди вынуждены носить контактные линзы или очки с минусовым значением. Нередко у них возникает необходимость в частой смене стекол и линз в связи с ухудшением зрения. Однако следует знать, что очки не могут остановить развития близорукости, они лишь исправляют преломление света. Если зрение ухудшается, и очки приходится менять на более сильные, значит, близорукость прогрессирует. Это происходит из-за увеличивающегося растяжения глазного яблока.

Прогрессирующая близорукость — это не безобидный дефект зрения, устраняемый с помощью очков, а серьезное глазное заболевание с тяжелыми последствиями. Прогрессирующей близорукостью, как правило, страдают дети в возрасте 7-15 лет. Растяжение глазного яблока приводит к тому, что сосуды, находящиеся внутри глаза, удлиняются, нарушается питание сетчатки, снижается острота зрения. Сетчатка, подобно натянутой нежной вуали, местами «расползается», в ней появляются дырочки и, как следствие, может возникнуть отслойка сетчатки. Это самое тяжелое осложнение близорукости, при котором зрение значительно снижается, вплоть до полной слепоты.

Помните! Своевременное обращение к офтальмологу поможет Вам предупредить грозные осложнения близорукости и сберечь зрение!

Только специалист может определить степень Вашей близорукости и выбрать наиболее подходящий для данного случая метод лечения.

Врачи клиники проведут необходимое обследование с помощью высокоточного оборудования. Диагностика близорукости включает следующие исследования:

  • проверка остроты зрения вдаль без очков, подбор нужных Вам стекол;
  • определение рефракции (преломления) Ваших глаз и степени близорукости;
  • измерения длины глаза в кабинете ультразвуковой диагностики. Это безболезненное и очень точное исследование, по его результатам врач судит о прогрессировании близорукости;
  • измерение с помощью ультразвука толщины роговицы в различных ее точках. Это исследование необходимо, если Вам предстоит рефракционная операция;
  • осмотра глазного дна (офтальмоскопия), что позволит врачу оценить состояние сетчатки, сосудов, зрительного нерва каждого глаза.

Это общая схема обследования пациентов с близорукостью, но лечение каждого человека требует индивидуального подхода. Поэтому при необходимости врач может назначить Вам дополнительные исследования.

Врачи выделяют следующие основные направления лечения близорукости:

  • остановка патологического роста глаза;
  • предупреждение возможных осложнений близорукости;
  • исправление рефракции близорукого глаза с избавлением, по возможности, от ношения очков и контактных линз.

Подробнее о методах лечения близорукости (миопии) Вы можете ознакомиться здесь

Дальнозоркость или гиперметропия — нарушение рефракции, при котором у пациентов снижается острота зрения при взгляде на предметы вблизи. Однако при дальнозоркости высокой степени пациент плохо различает предметы, находящиеся от него как на расстоянии 20-30 см, так и далее 10 м. Дальнозоркость приводит к систематическому перенапряжению глазных мышц, поэтому люди, страдающие гиперметропией, нередко мучаются от головной боли и зрительного переутомления. При дальнозоркости в той или иной степени страдает в среднем примерно каждый второй житель Земли старше 30 лет. В возрасте до шести лет и после 50 дальнозоркость является естественным состоянием зрительного аппарата человека. В норме у хорошо видящего человека изображение фокусируется в центральной зоне сетчатки, в то время как при дальнозоркости изображение формируется на плоскости за ней.

Основной причиной аномальной рефракции глаз чаще всего выступает небольшой размер глазного яблока в передне-заднем направлении. Именно поэтому у новорожденных детей дальнозоркость является естественным физиологическим явлением, которое в большинстве случаев с возрастом самостоятельно проходит. Также причиной дальнозоркости является нарушение аккомодации хрусталика, его неспособность правильно изменять кривизну. Это нарушение также приводит и к развитию возрастной дальнозоркости или пресбиопии, то есть к уменьшению аккомодационных возможностей хрусталика глаза с возрастом, что проявляется снижением четкости изображения расположенных близко предметов, затруднением при чтении.

Различают три степени гиперметропии:

  • слабая степень — до 4 диоптрий;
  • средняя степень — от 4 до 8 диоптрий;
  • дальнозоркость высокой степени — свыше 8 диоптрий.

Лечение гиперметропии заключается в очковой, либо контактной, либо хирургической коррекции.

Подробнее о методах лечения дальнозоркости (гиперметропии) Вы можете ознакомиться здесь

Астигматизм является одной из самых распространенных аномалий рефракции.

Астигматизм возникает вследствие несферичной формы роговицы, реже — хрусталика. В нормальном состоянии роговица и хрусталик здорового глаза имеют ровную сферическую преломляющую поверхность. При астигматизме сферичность роговицы и хрусталика нарушена и обладает разной кривизной в разных меридианах. Соответственно астигматизм является состоянием, при котором в разных меридианах поверхности роговицы присутствует разная преломляющая сила и изображение предмета при прохождении световых лучей через такую роговицу получается с искажениями. Часть участков изображения фокусируется на сетчатке, другие — «за» или «перед» ней. Следовательно вместо нормального изображения человек видит искаженное, в котором одни линии резкие, а другие — размытые. Аналогичное изображение можно получить, если смотреть на свое искаженное отражение в овальной чайной ложке. Вот такое искаженное изображение формируется на сетчатке глаза при наличии астигматизма.

Астигматизм в зависимости от рефракции глаза может быть:

  • миопический,
  • гиперметропический,
  • смешанный.

Выделяют три степени астигматизма:

  • слабую — до 2 диоптрий;
  • среднюю — до 3 диоптрий;
  • астигматизм высокой степени — 4 и более диоптрий.

Лечение астигматизма осуществляется очковой или контактной коррекцией, либо хирургически.

Подробнее о методах лечения астигматизма Вы можете ознакомиться здесь

источник

Строение органа зрения. Адаптация глаза. Аккомодация. Близорукость и дальнозоркость. Острота зрения. Проводящие пути органа зрения.

Строение органа зрения. Орган зрения состоит из глазного яблока и вспомогательного аппарата. В глазном яблоке содержится периферический отдел зрительного анализатора. Глаз человека состоит из внутренней оболочки (сетчатки), сосудистой и внешней белковой оболочки.

Внешняя оболочка состоит из двух частей — склеры и роговицы.

Непрозрачная склера занимает 5/6 поверхности внешней оболочки, прозрачная роговица — 1/6. Сосудистая оболочка состоит из трех частей радужки, реснитчатого тела и собственно сосудистой оболочки. В центре радужки находится отверстие — зрачок, через который лучи света проникают внутрь глаза. Она содержит пигменты, от которых зависит цвет глаз. Радужная оболочка переходит в тело, а то, в свою очередь, в собственно сосудистую оболочку. Сетчатка — это внутренняя оболочка глаза. Она имеет сложное слоистое строение — из нервных клеток и их волокон.

Различают десять слоев сетчатки. К внешнему пигментному слою сетчатки подходят палочки и колбочки, которые являются видоизмененными отростками светочувствительных зрительных клеток. От нервных клеток сетчатки идет зрительный нерв — начало ведущей части зрительного анализатора.

Схема анатомического строения глаза: 1 — сетчатка, 2

хрусталик, 3 радужная оболочка, 4 роговица, 5 — баковая оболочка (склера), 6 — сосудистая оболочка, 7 — зрительный нерв.

Склеристое тело — вполне прозрачное вещество, которое содержится в очень нежной капсуле и наполняет большую часть глазного яблока. Оно выступает захламливающей средой и входит в часть оптической системы глаза. Передней, слегка вогнутую поверхность оно прилегает к задней поверхности хрусталика. Его потеря не пополняется.

В верхнем боковом углу глазницы содержится слезная железа, которая выделяет слезную жидкость (слезу), увлажняющий поверхность глазного яблока, предотвращает ее подсыхание и переохлаждению. Слеза, увлажнив поверхность глаза, стекает выездным каналом в носовой полости. Веки и ресницы защищают глазное яблоко от того, чтобы внутрь глаза не попадали посторонние частицы, брови отводят в сторону пот, стекающий со лба, а это также имеет защитное значение.

Адаптация глаза

Выработка способности глаза видеть при различной освещенности называют адаптацией. Если вечером в комнате погасить свет, то сначала человек совершенно не различает окружающих предметов. Однако
уже через 1-2 мин она начинает схватывать контуры предметов, а еще через несколько минут видит предметы достаточно четко. Это происходит благодаря изменению чувствительности сетчатки в темноте. Пребывание в темноте в течение одного часа повышает чувствительность глаза примерно в 200 раз. И особенно быстро возрастает чувствительность в первые минуты.

Это явление объясняется тем, что при ярком свете зрительный пурпур палочковидных зрительных клеток разрушается полностью. В темноте он быстро восстанавливается, и палочковидные клетки, очень чувствительны к свету, начинают выполнять свои функции, тогда как колбочко подобные, малочувствительны к свету, не способны воспринимать зрительные раздражения. Вот почему человек в темноте не различает цветов.
Однако когда в темном помещении включить свет, он как бы ослепляет человека. Она почти не различает окружающих предметов, и через 1-2 мин ее глаза начинают видеть хорошо. Это объясняется тем, что зрительный пурпур в палочковидных клетках разрушился, чувствительность к свету резко снизилась и зрительные раздражения теперь воспринимаются только колбочкоподибнимы зрительными клетками.

Аккомодация глаза

Способность глаза видеть предметы на разном расстоянии называют аккомодацией. Предмет хорошо видно тогда, когда лучи, отраженные от него, собираются на сетчатке. Это достигается изменением выпуклости хрусталика. Изменение же наступает рефлекторно — при рассмотрении предметов, находящихся на разном расстоянии от глаза. Когда мы смотрим на расположенные около предметы, выпуклость хрусталика увеличивается. Преломления лучей в глазу становится больше, в результате чего на сетчатке возникает изображение. Когда мы смотрим вдаль, хрусталик сплющивается.

В состоянии покоя аккомодации (взгляд вдаль) радиус кривизны передней поверхности хрусталика равна 10 мм, а при максимальной аккомодации, когда предмет всего приближен к глазу, радиус кривизны передней поверхности хрусталика — 5,3 мм.

Потеря эластичности сумки хрусталика с возрастом приводит к уменьшению его захламливающей способности при наибольшей аккомодации. Это увеличивает способность пожилых людей рассматривать предметы на далеком расстоянии. Ближайшая точка ясного видения с возрастом удаляется. Так, в 10-летнем возрасте она размещена на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 — 11 см, в 35 — 17 см, а в 60-70 лет приближается к 80-100 см .

С возрастом хрусталик становится менее эластичным. Способность к аккомодации начинает спадать уже с десяти лет, однако на зрении это сказывается только в преклонном возрасте (старческая дальнозоркость).

Острота зрения — это способность глаза отдельно воспринимать две точки, расположенные друг от друга на некотором расстоянии. Видение двух точек зависит от размеров изображения на сетчатке. Если они малы, то оба изображения сливаются и различить их невозможно. Размер изображения на сетчатке зависит от угла зрения: чем он меньше при восприятии двух изображений, тем больше острота зрения.

Для определения остроты зрения большое значение имеет освещение, окраска, размер зрачка, угол зрения, расстояние между предметами, места сетчатки, на которые падает изображение, и состояние адаптации. Острота зрения является простым показателем, характеризующим состояние зрительного анализатора у детей и подростков. Зная остроту зрения у детей, можно осуществлять индивидуальный подход к учащимся, размещение их в классе, рекомендовать соответствующий режим учебной работы, соответствует адекватному нагрузке на зрительный анализатор.

Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки — место наилучшего видения — пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки — биполярным клеткам (нейроцитам), а после них — нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.

Читайте также:  Заболевания глаукомой при близорукости

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.

При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях («Д» — дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.

При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.

Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

32. Строение органа слуха и равновесия.

Орган слуха и равновесия, преддверно-улитковый орган (organum vestibulocochleare) у человека имеет сложное строение, воспринимает колебания звуковых волн и определяет ориентировку положения тела в пространстве.

Предверно-улитковый орган (рис. 148) делится на три части: наружное, среднее и внутреннее ухо. Эти части тесно связаны анатомически и функционально. Наружное и среднее ухо проводит звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом. Внутреннее ухо, в котором различают костный и перепончатый лабиринты, образует орган слуха и равновесия.

Рис. 148. Преддверно-улитковый орган (орган слуха и равновесия):

1— верхний полукружный канал; 2— преддверие; 3 — улитка; 4— слуховой нерв; 5 — сонная артерия; 6 — слуховая труба; 7— барабанная полость; 8— барабанная перепонка; 9— наружный слуховой проход; 10— наружное слуховое отверстие; 11 — ушная раковина; 12— молоточек

Различают два вида передачи звуковых колебаний — воздушную и костную проводимость звука. При воздушной проводимости звука звуковые волны улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку, а затем через систему слуховых косточек перилимфе и эндолимфе. Человек при воздушной проводимости способен воспринимать звуки от 16 до 20 000 Гц. Костная проводимость звука осуществляется через кости черепа, которые также обладают звукопроводимостью. Воздушная проводимость звука выражена лучше, чем костная.

Рецепторы вестибулярного аппарата раздражаются от наклона или движения головы. При этом происходят рефлекторные сокращения мышц, которые способствуют выпрямлению тела и сохранению соответствующей позы. При помощи рецепторов вестибулярного аппарата происходит восприятие положения головы в пространстве движения тела. Известно; что сенсорные клетки погружены в желеобразную массу, которая содержит отолиты, состоящие из мелких кристаллов карбоната кальция. При нормальном положении тела сила тяжести заставляет отолиты оказывать давление на определенные волосковые клетки. Если голова наклонена теменем вниз, отолит провисает на волосках; при боковом наклоне головы один отолит давит на волоски, а другой провисает. Изменение давления отолитов вызывает возбуждение волосковых сенсорных клеток, которые сигнализируют о положении головы в пространстве. Чувствительные клетки гребешков в ампулах полукружных каналов возбуждаются при движении и ускорении. Поскольку три полукружных канала расположены в трех плоскостях, то движение головы в любом направлении вызывает движение эндолимфы. Раздражения волосковых сенсорных клеток передаются чувствительным окончаниям преддверной части преддверно-улиткового нерва. Тела нейронов этого нерва находятся в преддверном узле, который лежит на дне внутреннего слухового прохода, а центральные отростки в составе преддверно-улиткового нерва идут в полость черепа, а затем в мозг к вестибулярным ядрам. Отростки клеток вестибулярных ядер (очередной нейрон) направляются к ядрам мозжечка и к спинному мозгу, образуют далее преддверно-спинномозговой путь. Они также входят в задний продольный пучок ствола головного мозга. Часть волокон преддверной части преддверно-улиткового нерва, минуя вестибулярные ядра, идут непосредственно в мозжечок.

При возбудимости вестибулярного аппарата возникают многочисленные рефлекторные реакции двигательного характера, которые изменяют деятельность внутренних органов, а также различные сенсорные реакции. Примером таких реакций может быть появление быстро повторяющихся движений глазных яблок (нистагма) после проведения вращательной пробы: человек делает глазами ритмичные движения в сторону, противоположную вращению, а затем очень быстро в сторону, которая совпадает с направлением вращения. Возможны также появление изменений в деятельности сердца, в суживании или расширении сосудов, снижение артериального давления, усиление перистальтики кишечника и желудка и др. При возбудимости вестибулярного аппарата появляется чувство головокружения, нарушается ориентировка в окружающей среде, возникает чувство тошноты. Вестибулярный аппарат участвует в регуляции и перераспределении мышечного тонуса

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

источник

Аккомодация — это механизм, позволяющий нам фокусироваться на предмете, независимо от его расстояния до нашего глаза. Давайте вникнем в детали этого механизма, а за одно познакомимся с понятиями «обсолютная и относительная аккомодция», «дальнейшая и ближайшая точки ясного зрения» и попробуем приментить эти знания на практике.

Аккомодация — это механизм, позволяющий нам фокусироваться на предмете, независимо от его расстояния до нашего глаза. Пациентам, далеким от медицины, я объясняю этот механизм так: в глазу есть хрусталик, который формой похож на зерно чечевицы; вокруг хрусталика как удав свернулась кольцом ресничная мышца; когда мы смотрим, например, в книгу, эта мышца сжимает свое кольцо, сдавливает хрусталик по экватору и делает его более толстым, тогда преломление его становится сильнее и мы четко видим текст. Когда мы опять переводим взгляд вдаль, ресничная мышца расслабляется, давление на хрусталик уменьшается, он опять становится более плоским и теперь мы четко видим вдаль. Схема упрощена до предела, обывателю понятно.

Сначала анатомия. Ресничная мышца залегающая в ресничном теле, состоит из трех самостоятельных групп мышечных волокон (их даже называют отдельными мышцами): радиальные волокна (от хрусталика к наружной оболочке глаза), циркулярные (вот эти — кольцом как удав) и меридиональные (под самой склерой вдоль меридианов глаза, если считать, что полюсы на глазном яблоке — впереди и сзади). Представили себе расположение этих волокон? Я по прежнему не хочу пользоваться картинками, чтобы не создавать проблем нашим слабовидящим подписчикам. Если что-то остается непонятным — пишите, спрашивайте. Мышечные волокна сами не прикрепляются к хрусталику, они находятся в толще ресничного тела. Но от ресничного тела к центру, к капсуле хрусталика идут так называемые Цинновы связки. Вся картина напоминает колесо велосипеда, где шина — ресничная мышца, обод — ресничное тело, спицы – Цинновы связки, а ось — хрусталик.

Теперь физиология. До недавнего времени единственно верной признавалась теория аккомодации Гельмгольца, выдвинутая еще в 19 веке. Суть этой теории в следующем. Двигательную иннервацию ресничная мышца получает от вегетативной нервной системы, поэтому акт аккомодации приказам коры головного мозга не подчиняется. Мы не можем просто напрячь ресничную мышцу, как могли бы просто поднять руку. Для включения механизма аккомодации нужно перевести взгляд на ближележащий предмет. От него в глаз идет расходящийся пучок лучей, для преломления которого оптической силы глаза уже мало, фокус изображения получается за сетчаткой, а на сетчатке появляется расфокусировка. Вот эта расфокусировка изображения воспринятая мозгом, является импульсом к включению механизма аккомодации. Нервный импульс (приказ) бежит по глазодвигательному нерву (в его составе есть парасимпатические вегетативные волокна) к ресничной мышце, мышца сокращается (сжимается кольцо удава), натяжение Цинновых связок уменьшается, они перестают растягивать капсулу хрусталика.

Таким образом, по Гельмгольцу имеют место следующие положения:

  1. механизм аккомодации состоит из двух составляющих: напряжения аккомодации (активный процесс) и расслабления аккомодации (пассивный процесс).
  2. напряжение аккомодации может передвигать фокус только вперед, при расслаблении аккомодации он сам перемещается назад.
  3. глаз может сам за счет силы ресничной мышцы компенсировать небольшие степени дальнозоркости — ресничная мышца все время в небольшом напряжении, это называется «привычный тонус аккомодации». Именно поэтому в молодом возрасте бывает скрытая дальнозоркость, которая вылезает со временем. Поэтому одни люди до старости видят вдаль хорошо, а другим с возрастом требуются положительные очки для дали – скрытая дальнозоркость проявилась.
  4. близорукость глаз скомпенсировать не может, потому что напряжением аккомодации невозможно передвинуть фокус назад. Поэтому даже слабые степени близорукости проявляются снижением зрения вдаль, поэтому скрытой близорукости не бывает.

В последнее время появились новые взгляды на механизм аккомодации. Разными учеными выдвигаются предположения, что расслабление аккомодации — тоже активный процесс с участием радиальных волокон ресничной мышцы, что меридиональные волокна ресничной мышцы могут передвигать сетчатку вперед и компенсировать близорукость (не фокус передвигается к сетчатке, а сетчатка передвигается вперед к фокусу: если гора не идет к Магомету…), что в акте аккомодации участвуют наружные мышцы глазного яблока, сдавливающие глаз при установке на близкие предметы и увеличивающие кривизну роговицы и длину зрительной оси глаза. Кстати, упоминавшийся Бейтс тоже считал, что в аккомодации участвуют наружные мышцы глаза, поэтому все внимание уделял их тренировкам.

Но сначала выжмем из теории Гельмгольца все, что можно выжать: она хорошо объясняет большую часть нарушений зрения.

Количественно аккомодацию характеризуют две величины: длина и объем.

Объем аккомодации — это величина в диоптриях, на которую хрусталик способен менять свою оптическую силу.

Длина аккомодации — это часть пространства (в метрах или сантиметрах), в пределах которой работает аккомодация, то есть в пределах которой мы можем четко видеть предметы. Длина аккомодации характеризуется положением двух точек – ближайшей точки ясного зрения и дальнейшей точки ясного зрения. Расстояние между ними — это и есть длина аккомодации. Соответственно, на ближайшую точку ясного зрения мы смотрим при максимальном напряжении аккомодации, а на дальнейшую точку – при полном покое аккомодации.

Мы выделяем аккомодацию каждым глазом отдельно (это абсолютная аккомодация) и двумя глазами вместе (относительная аккомодация).

В оптометрии принято абсолютную аккомодацию характеризовать положением дальнейшей и ближайшей точек ясного зрения, а относительную аккомодацию — объемом.

Как определить положение ближайшей точки ясного зрения? Возьмите в одну руку книжку с мелким текстом, в другую руку — школьную линейку, которую приложите одним концом к своему лбу, а другой конец положите на верхний край книжки. Закройте один глаз. Теперь приближайте книжку к глазам до тех пор, пока текст не начнет расплываться. Самое близкое расстояние, на котором Вы еще можете читать, отметьте по линейке. Это и будет Ваша ближайшая точка ясного зрения.

Читайте также:  Близорукость отличается от дальнозоркости тем что

Как определить дальнейшую точку ясного зрения? Аналогично, только текст отодвигаем от глаз (линейку придется брать оооочень большую — шутка).

Если дальнейшая точка ясного зрения дальше 5 метров — считаем, что она в бесконечности, значит, имеем эмметропию. У эмметропов длина аккомодации — это все пространство, кроме нескольких сантиметров перед самым глазом (ближе, чем ближайшая точка ясного зрения). Соответственно высок объем аккомодации. Ресничная мышца у них натренированная.

Если дальнейшая точка ясного зрения ближе 5 метров — это близорукость, степенью которой будет величина, обратная дальнейшей точке ясного зрения. Например, при отодвигании от глаза текст начинает расплываться в 50 см, значит имеет место близорукость в 2 Д (100 см поделим на 50 см в системе СГС и 1 поделим на 0,5 в системе СИ). Если текст расплывается в 25 см от глаз — близорукость в 4 Д. У близоруких длина аккомодации намного меньше, чем у эмметропов — это область между дальнейшей и ближайшей точками ясного зрения. Заметьте, что все-таки есть лучи, которые фокусируются на сетчатке, значит, острота зрения у малышей с близорукостью все равно будет развиваться. Вблизи они видят хорошо сами, а вдаль смогут хорошо видеть с помощью очков. Соответственно, объем аккомодации у близоруких людей снижен относительно эмметропов. И это понятно. Допустим, ближайшая точка ясного зрения 10 см перед глазом. У эмметропа объем аккомодации — это размах взгляда из бесконечности до 10 см перед глазом. А у миопа — всего лишь от расстояния ближе 5 м до этих самых 10 см перед глазом. Чем больше близорукость, тем меньше объем аккомодации. Миопам просто не приходится тренировать свою ресничную мышцу, они и без ее напряжения видят вблизи хорошо. Поэтому при близорукости изначально мы имеем слабость аккомодации. Запомним это! Дальше это очень будет нужно.

С дальнозоркостью сложнее всего. Дальнейшая точка ясного зрения у дальнозорких мнимая, она находится за глазом и практически совпадает с фокусом глаза (напомню, у дальнозорких он позади сетчатки). Это означает, что в природе нет таких лучей, которые сами фокусируются на сетчатке глаза, их можно получить только напряжением аккомодации или собирающими линзами. Отсюда важный вывод: если степень дальнозоркости выходит за пределы возможностей аккомодации, острота зрения развиваться у ребенка не сможет, просто не будет опыта четкого видения. После 12 лет у таких детей развить остроту зрения практически невозможно. Значит, на ребенка с высокой дальнозоркостью очки нужно надевать как можно раньше, чтобы дать возможность развивать остроту зрения. Объем аккомодации у дальнозорких обычно намного выше, чем у эмметропов. У них ресничная мышца как следует накачана, потому что даже при зрении вдаль, когда у эмметропов она отдыхает, у дальнозорких эта мышца работает. При перегрузке ресничной мышцы у дальнозорких начинает отдаляться от глаз ближайшая точка ясного зрения. Помочь здесь можно двумя способами: назначить очки для постоянного ношения, чтобы снять с мышцы излишнюю нагрузку (в этих очках ресничная мышца будет напрягаться вблизи в физиологических условиях, как у эмметропов) или дать очки только для чтения, чтобы облегчить чрезмерные нагрузки. Детям больше подходит первый способ, взрослым, у которых уже сформировался привычный тонус аккомодации — больше нравится второй.

Относительную аккомодацию принято всегда характеризовать объемом. И измеряют ее в диоптриях — с помощью пробных линз из набора. В относительной аккомодации выделяют две части: положительную и отрицательную.

Отрицательная часть — эта та аккомодация, которую мы затратили, чтобы четко увидеть какой-либо предмет, ее мы определяем методом нейтрализации положительными стеклами: смотрим на какой-нибудь предмет и приставляем к глазам положительные стекла, усиливая их до тех пор, пока предмет не начнет расплываться. Сила стекол, при которых предмет еще виден четко, покажет объем затраченной аккомодации.

Положительная часть — это запас аккомодации, то есть та величина, на которую ресничная мышца еще способна сократиться, другими словами, резерв. Определяют ее аналогично отрицательной части, только приставляют к глазам отрицательные линзы.

источник

Давайте займемся объяснением функционирования прибора, занимающего достаточно важное место в жизни многих людей. Как известно, очки корректируют процесс зрительного восприятия у людей с ослабленным зрением. В очках используются различные виды линз. Именно они – линзы – и являются прибором, изменяющим траекторию движения световых лучей – т.е. преломляющим их.

Не хочется сильно забегать вперед, однако следует напомнить, что в Главе, посвященной механике элементарных частиц, мы уделили большое внимание причинам и механизму изменения траектории движущихся частиц. И основными причинами изменения траектории, если вы помните, были названы Поля Притяжения и Отталкивания. Так что в этой статье мы лишь постараемся конкретным образом применить уже раскрытые нами процессы.

Помимо очков существует еще много других типов оптических приборов, где человек нашел применение линзам – лупа, бинокль, телескоп, микроскоп. Это самые основные.

Наши глаза – это тоже разновидность оптических приборов. И как подобает таким устройствам, они имеет в своем составе линзы – хрусталики. Внутри глаза, а точнее, внутри ресничного тела, находятся мышцы, которые управляют формой хрусталика – увеличивают или уменьшают его кривизну. Эти мышцы носят название – аккомодационные, поскольку изменение формы хрусталика – это акт аккомодации (приспособления). Эти мышцы связаны с хрусталиком при помощи цинновых связок. Когда мышца расслаблена, возрастает расстояние между ней и хрусталиком, и связки натягиваются – кривизна хрусталика уменьшается. Т.е. хрусталик (линза) становится более вытянутым, более плоским. Мышцы расслабляются — уменьшается ее расстояние до хрусталика, и как следствие – ослабевает натяжение цинновых связок. В итоге, кривизна хрусталика возрастает, так как расслабленные связки его не растягивают.

Обычные линзы, изготавливаемые из стекла, можно сделать любой формы – и выпуклыми (собирающими) и вогнутыми (рассеивающими). Собирающие линзы преобразуют параллельный пучок световых лучей в сходящийся. Рассеивающие, наоборот, превращают параллельный пучок в расходящийся. Хрусталик – это пример собирающей линзы. Степень выпуклости или вогнутости может быть любой, в том числе и очень небольшой, стремящейся к нулю. Но при этом она все же будет существовать.

В оптических приборах используются линзы всевозможных типов – выпуклые, вогнутые, выпукло-вогнутые, двояковыпуклые и двояковогнутые. При этом величина кривизны обеих поверхностей линзы может быть любой – все зависит от конкретных задач, которых стремятся достичь при помощи данного устройства.

Для чего же нужна разная кривизна – и хрусталика, и стеклянных линз? И как это сказывается на особенностях получаемого «на выходе» из линзы изображения (т.е. прошедшего через нее)?

Для ответа на эти и другие вопросы нам понадобится вспомнить опыты И.Ньютона со стеклянными призмами, при помощи которых он разлагал белый свет в спектр. Для чего нам это надо?

Все дело в том, что при прохождении света (фотонов видимого диапазона) через линзу, с ними происходит то же, что и при прохождении их через призму. Фотоны (как любые другие энергетические единицы Вселенной) отклоняются под действием суммарного Поля Притяжения вещества линзы. Та же, как они отклонялись в опытах И. Ньютона под действием суммарного Поля Притяжения вещества призмы.

Соответственно нетрудно сделать вывод о том, что суммарное Поле Притяжения со стороны тех частей линзы (или призмы), где толщина вещества больше, будет тоже больше. В этом и заключается весь «трюк». В основании призмы вещества (стекла) больше. Поэтому в опыте И. Ньютона именно в направлении основания призмы смещаются (преломляются) фотоны, а не к вершине. Тот же самый процесс мы можем наблюдать и в линзе – где вещества больше – туда и отклоняются (преломляются) световые лучи.

Если линза выпуклая, то вдоль ее оси (к центру) вещества будет больше, чем по краям.

Утолщение вдоль оси линзы может быть ничтожным. Однако даже если это так, оно все равно есть. И притяжение со стороны центральной части линзы будет хоть не намного, но больше, чем со стороны краев.

Если линза вогнутая, то по краям толщина вещества будет больше, чем в области оси линзы.

И в этом случае притяжение со стороны вещества краев больше, нежели притяжение центральной области линзы.

Именно поэтому выпуклая (собирающая) линза отклоняет фотоны (и любые другие частицы) ближе к центру своей оси. А вогнутая (рассеивающая) – ближе к краям. А потому изображение, «прошедшее» через выпуклую линзу, уменьшается в размере. И лучи после такой линзы сходятся в одной точке раньше, чем, если бы они не прошли через нее.

Изображение, «прошедшее» через вогнутую линзу, напротив, расширяется, увеличивается, так как фотоны световых лучей притягиваются краями и отклоняются в их направлении.

А теперь обратимся к причинам аккомодации и вопросу коррекции близорукости и дальнозоркости. Начнем со второго пункта.

Обратите внимание, в этой части статьи мы приведем вначале известные факты, касающиеся объяснения причин указанных нарушений зрения. Поэтому тем, кому эти факты известны, может стать скучно. Не торопитесь. После этого обещаем вам интересные выводы по этому вопросу.

И близорукость, и дальнозоркость – это заболевания глаз, вызванные изменениями в аккомодационной мышце, контролирующей величину кривизны хрусталика. Как уже говорилось, эта мышца расположена в толще цилиарного тела. От мышцы к хрусталику ведут связки. Когда мышца расслаблена, ее диаметр больше (т.е. она дальше от хрусталика) и связки натянуты. А значит, хрусталик уплощен (его кривизна меньше). Напротив, когда мышца сокращается, она сжимается и приближается к хрусталику. Соответственно, натяжение связок уменьшается и хрусталик округляется (т.е. его кривизна увеличивается).

Так вот, близорукость – это усиление функциональной активности аккомодационной мышцы, обусловленное условиями работы (жизни) и наследственностью. Напряжение глаза, связанное с попытками разглядеть что-либо на близком расстоянии, усиливает близорукость. При близорукости мышца привыкает находиться в напряженном, сокращенном состоянии. Близоруких людей условия труда не стимулируют часто обращать свой взор вдаль, они постоянно что-то разглядывают вблизи. Такие люди либо много читают, либо заняты мелкой «ювелирной» работой.

Когда хрусталик не растянут, в центральной части этой линзы увеличивается толщина вещества. Поэтому возрастает суммарное Поле Притяжения со стороны этой области. И фотоны притягиваются и отклоняются к центральной части хрусталика в большей мере, чем при меньшей кривизне хрусталика.
При дальнозоркости человек, напротив, лучше видит вдали, чем вблизи. Дальнозоркость развивается, когда ослаблена функциональная активность аккомодационной мышцы. Она плохо сокращается, и из-за этого связки растягивают хрусталик даже тогда, когда не должны этого делать.

Когда хрусталик растягивается, в центральной части этой линзы уменьшается толщина вещества. А значит, уменьшается суммарное Поле Притяжения со стороны этой области. И фотоны притягиваются и отклоняются к центральной части хрусталика меньше, нежели когда кривизна хрусталика была больше.
Дальнозоркость – это распространенная патология зрения у людей пожилого возраста. И обусловлена она общим ослаблением в старческом организме функциональной активности всех групп мышц.

А теперь обещанное в начале этой части статьи интересное наблюдение.

Давайте задумаемся над следующим вопросом. Зачем хрусталику вообще нужно делать различие между световыми лучами, приходящими с разного расстояния? Для чего хрусталику нужно постоянно перенастраиваться в зависимости от того, смотрит ли человек (или животное) вдаль, либо рассматривает тела вблизи. Ведь, казалось бы, что световые лучи всюду одинаковы. По крайней мере, так утверждает современная наука. Скорость света рассматривается как величина постоянная. А потому скорость световых лучей, приходящих в глаз как издалека, так и с близкого расстояния, в соответствии с утверждениями ученых современности, будет одна и та же. Да и цветовой состав волн один и тот же.

Тогда для чего же нужна аккомодация? Почему хрусталик при неизменной форме не может одинаково хорошо встречать и доводить до сетчатки как лучи издалека, так и ближние лучи? Для чего нужна эта постоянная перенастройка?

Наука аккуратно замалчивает это вопрос. При этом считается, что явление аккомодации детально раскрыто. В данном случае, в который раз можно убедиться в том, что наука зачастую ограничивается констатацией и описанием следствий, оставляя причины явлений нетронутыми.
Человеческий организм – это умный механизм, который постоянно занят подстраиванием себя под окружающие условия. И настройка хрусталика – один из таких примеров.

Приступим к объяснению причины аккомодации. И эта причина достаточно проста.

Световые лучи вовсе не одинаковы по скорости, как это принято считать. Скорость света – это величина не постоянная. Конечно, разница в скорости световых лучей может быть столь незначительной, что ею пренебрегают при измерениях. Но не пренебрегает организм. Он улавливает малейшую разницу в скорости световых лучей и соответствующим образом перенастраивает хрусталик.

Если вы помните, когда мы говорили об инерционном движении элементарных частиц, то выяснили, что частицы Инь движутся равнозамедленно, а частицы Ян равноускоренно. Однако если в составе светового луча есть частицы обоих типов, будет происходить перераспределение энергии. В результате чего Инь ускоряются, а Ян замедляются. И все частицы в потоке движутся с некоей единой суммарной скоростью.

Кроме того, фотоны света, о которых мы ведем речь – это частицы верхних уровней Физического Плана. Эти уровни – это так называемые эфирные подпланы Физического Плана. Среди частиц Физического Плана больше процент частиц Инь. Лучше всего испускаются и отражаются химическими элементами частицы Ян. В составе Физического Плана Ян – это частицы красного цвета. Однако такие частицы составляют только 1/3 от всех частиц. Остальные – Инь. В итоге, в составе любого светового луча больше всего частиц желтого цвета. Они обладают Полем Притяжения. Но все же его величина гораздо меньше, чем у частиц синего цвета. А потому желтые испускаются или отражаются (при нагреве или соударении) гораздо лучше синих. Это было сказано для того, чтобы было понятно, что световые лучи Физического Плана обязательно замедляются с течением времени.

Читайте также:  Близорукость какой знак у очков

Отсюда можно сделать простой вывод. Скорость лучей, испущенных раньше, меньше скорости лучей, испущенных позднее. Конечно, при условии, что химический состав и температура тел, испускающих и отражающих свет, всюду примерно одинаковы. Можно это правило сформулировать чуть иначе. Скорость лучей, прошедших большее расстояние, меньше скорости лучей, прошедших меньший путь.

А из этого вывода следует, что световые лучи, поступающие в глаз с ближнего расстояния, характеризуются большей скоростью, чем более дальние световые лучи.

Но это еще не окончание объяснения. Какое отношение имеет скорость световых лучей к кривизне хрусталика?

Начнем с того, что в сетчатке глаза человека и животных есть два типа фоторецепторов – колбочки палочки. Колбочки, в отличие от палочек, осуществляют более детальный анализ изображения – можно сказать, они отвечают за резкость, четкость восприятия всех деталей. Палочки, скорее, воспринимают общий образ, силуэт, без различения отдельных мелких деталей.

У большинства дневных животных и у человека колбочки расположены в центральной части сетчатки. Центральная ямка желтого пятна состоит только из колбочек. В то же время на периферии сетчатки палочки численно преобладают над колбочками.

Второе. Вот 2-ой главе, посвященной Механике элементарных частиц, мы много внимания уделили особенностям действия на элементарные частицы различных Сил, в том числе и одновременному воздействию разных типов Сил. Когда фотон света, двигаясь по инерции, входит в хрусталик, его траектория преломляется в направлении центральной части этой глазной линзы, так как хрусталик – это двояковыпуклая линза, и в его центральной части вещества больше (а значит, больше и суммарное Поле Притяжения). Чем больше кривизна, тем больше толщина линзы (т.е. тем больше вещества вдоль оси), и тем на больший угол отклонятся световые лучи.

Если вы помните, инерционное движение фотонов происходит по той причине, что в каждом фотоне возникает Сила Инерции. Эта Сила Инерции – это эфир, испускаемый задним полушарием, и заставляющий частицу двигаться вперед. Сила Инерции конкурирует в фотоне с Силой Притяжения со стороны вещества хрусталика. В соответствии с Правилом Параллелограмма. В итоге фотон изменяет направление движения. И его новая траектория будет совпадать с направлением вектора результирующей Силы. Чем больше Сила Инерции, тем больше скорость частицы. Это означает, что в более быстрых световых лучах Сила Инерции больше. И, соответственно, чем больше Сила Инерции, тем больше должна быть Сила Притяжения, для того, чтобы «уравновешивать» Силу Инерции. А как это сделать и для чего это нужно?

Сделать это просто – увеличивая кривизну хрусталика. Чем больше кривизна, тем больше Сила Притяжения. Это позволяет отклонять на необходимый угол световые лучи с большей скоростью. Напротив малая кривизна подходит для более медленных лучей, у которых величина Силы Инерции меньше.

Но для чего это делается? Почему угол преломления лучей должен быть постоянным? Причина этого была названа, когда мы рассказывали о колбочках и палочках. Больше всего колбочек в центральной части глаза. А ведь именно колбочки отвечают за детально четкое рассмотрение тел.

Именно поэтому нормальный организм всегда стремится поддерживать один и тот же угол преломления световых лучей путем изменения формы хрусталика. Такова причина существования аккомодации.

А теперь мы выясним, что же происходит со световыми лучами в близоруком и дальнозорком хрусталике.

Близорукий хрусталик из-за недостаточной сократительной активности аккомодационной мышцы слабо реагирует на стремление организма рассмотреть что-либо вдали. При близорукости кривизна хрусталика оказывается слишком большой для того, чтобы «соответствовать» фотонам, прошедшим большее расстояние, и чья Сила Инерции ослаблена в большей мере. Большая Сила Притяжения близорукого хрусталика (с большей кривизной) рассчитана на большую Силу Инерции фотонов с близкого расстояния. А фотоны с малой Силой Инерции под действием такой большой Силы Притяжения преломляются на больший угол, чем это необходимо для того, чтобы попасть на желтое пятно.

В результате фотоны, проходящие через хрусталик ближе к периферии, преломляясь, попадают на периферию сетчатки, где преобладают палочки. В итоге, больше, чем нужно, фотонов, проходящих через хрусталик (за исключением тех, чья траектория движения совпадает с осью линзы), преломляясь, попадает на периферию сетчатки, где преобладают палочки, а не в области ближе к центру (где колбочки). Именно из-за этого резкость воспринимаемого изображения уменьшается. Из-за этого тела вдали близорукие люди видят нечетко. Однако, снимая напряжение с глаз, отдыхая и рассматривая тела вдали, у них есть возможность улучшить свое зрение.

При дальнозоркости все обстоит с точностью наоборот.

Слабость аккомодационной мышцы ведет к чрезмерному уплощению хрусталика. При дальнозоркости хрусталик недостаточно хорошо реагирует на стремление организма разглядеть что-либо вблизи. Аккомодационная мышца должна сократиться с тем, чтобы расслабить цинновы связки и увеличить тем самым кривизну хрусталика. Этого не происходит, и хрусталик остается уплощенным. В итоге, фотоны, приходящие в глаз с близкого расстояния, и потому обладающие большей силой Инерции, преломляются на угол меньше того, что необходим. А поэтому тоже оказываются ближе к периферии сетчатки, а не к ее центру. Слово «тоже» использовано потому, что при близорукости фотоны также оказываются ближе к периферии. Малая Сила Притяжения дальнозоркого хрусталика рассчитана на фотоны, пришедшие издали и потому обладающие меньшей Силой Инерции.

А когда фотоны приходят с близкого расстояния, их Сила Инерции велика (скорость велика), и поэтому вектор равнодействующей Силы Притяжения и Силы Инерции оказывается больше смещен в параллелограмме к вектору Силы Инерции. Так что, как видите, и в случае близорукости фотоны оказываются ближе к периферии сетчатки (насколько ближе – зависит от тяжести миопии), и при дальнозоркости. С той лишь разницей, что при близорукости, после преломления, они попадают на сторону сетчатки, противоположную стороне хрусталика, через которую они прошли. В то время как при дальнозоркости фотоны оказываются на той же стороне сетчатке, что и сторона хрусталика, через которую они попадают на сетчатку.

Друзья! Хотелось бы услышать Ваше мнение по поводу данной статьи!

источник

Несмотря на то, что термин «аномалия рефракции» возможно, знаком не всем, о самих аномалиях наслышан каждый. Это близорукость, дальнозоркость и астигматизм.

Рефракция глаза — это преломляющая сила оптической системы глаза. Рефракцию, при которой задний главный фокус попадает на сетчатку, называют соразмерной и обозначают как эмметропия — это нормальное зрение.

Астигматизм — это нарушение зрения, при котором происходит искажение изображения предмета (обычно по вертикальной или горизонтальной оси) из-за того, что лучи света не фокусируются непосредственно на сетчатке глаз.

Близорукость (миопия) — заболевание, при котором человек плохо различает предметы, расположенные на дальнем расстоянии. При близорукости изображение приходится не на определенную область сетчатки, а расположено в плоскости перед ней. Поэтому оно воспринимается нами как нечеткое. Происходит это чаще всего из-за несоответствия силы оптической системы глаза и его длины. Обычно при близорукости размер глазного яблока увеличен (осевая близорукость), хотя она может возникнуть и как результат чрезмерной силы преломляющего аппарата (рефракционная миопия). Чем больше несоответствие, тем сильнее близорукость.

Врачи-офтальмологи разделяют миопию на:

  • слабую (до 3,0 диоптрий включительно);
  • среднюю (от 3,25 до 6,0 диоптрий);
  • высокую (более 6,0 диоптрий). Высокая миопия может достигать весьма значительных величин: 15, 20, и даже 30 диоптрий.

Близорукие люди нуждаются в очках для дали, а многие и для близи, когда миопия превышает 6–8 и более диоптрий. Но очки, увы, не всегда достаточно хорошо корректируют зрение. Обычно близорукость сопровождается увеличением длины глазного яблока, что приводит к растяжению сетчатки. Чем сильнее степень близорукости, тем выше вероятность возникновения проблем, связанных с сетчаткой глаза — дистрофия, микроразрывы. Например, во время родов сетчатка с дистрофическими изменениями у беременной женщины из-за физического перенапряжения во время потуг чрезмерно растягивается и может произойти ее отслоение, что в крайнем случае может привести к полной потере зрения. Поэтому во время беременности женщинам, особенно имеющим близорукость, рекомендуется посетить офтальмолога и, при необходимости, провести процедуру периферической профилактической лазерной коагуляции (ППЛК) сетчатки. Она направлена на укрепление периферической зоны сетчатки, чтобы предупредить отслоение сетчатки.

Анатомическая предрасположенность к близорукости может передаваться по наследству, также близорукость может быть приобретенной. Иногда миопия начинает прогрессировать, и человек постепенно, с увеличением диоптрий, теряет способность самостоятельно ориентироваться в пространстве. Задача любой коррекции близорукости — ослабить силу преломляющего аппарата глаза так, чтобы изображение попадало на определенную область сетчатки (то есть вернулось к норме).

Близорукость корректируется с помощью очков и контактных линз, но возможно и кардинальное решение проблемы.

  • лазерная коррекция зрения — в результате воздействия на слои роговицы лучом лазера, ей придается форма «естественной линзы» с индивидуальными для каждого пациента параметрами. На сегодняшний день наиболее распространены несколько методик лазерной коррекции зрения: ФРК, ЛАСИК, ЛАСЕК, ЭПИ-ЛАСИК, СУПЕР-ЛАСИК, ФЕМТОЛАСИК (ИНТРА-ЛАСИК). В ходе лазерной коррекции происходит воздействие на роговицу. Ее форма изменяется и за счет этого изображение начинает фокусироваться на сетчатке, как и должно быть. Высокий уровень безопасности и современные эксимер-лазерные установки последнего поколения сделали процедуру коррекции простой и доступной.
  • имплантация факичных линз используется, если естественная аккомодация еще не утрачена. В ходе лечения природный хрусталик человека остается на месте, а специальную линзу имплантируют в заднюю или переднюю камеру глаза. Чаще всего используются заднекамерные линзы, которые имплантируются за радужкой перед хрусталиком и не требуют дополнительной фиксации.

Часто близорукость сопровождается таким явлением, как астигматизм, хотя он может быть и сам по себе. В нормальном состоянии роговица и хрусталик здорового глаза имеют ровную сферическую поверхность. Астигматизм возникает вследствие неправильной (не сферичной) формы роговицы (реже — хрусталика). Соответственно, при астигматизме в разных меридианах поверхности роговицы присутствует разная преломляющая сила, и изображение предмета при прохождении световых лучей через такую роговицу получается с искажениями. Некоторые участки изображения могут фокусироваться на сетчатке, другие — «за» или «перед» ней (бывают и более сложные случаи). В результате вместо нормального изображения человек видит искаженное, в котором одни линии четкие, другие — размытые.

  • очки и специальные торические контактные линзы должны подбираться строго индивидуально, после прохождения тщательного диагностического обследования.
  • эксимер-лазерная коррекция — с помощью воздействия лазером на слои роговицы, ей придается необходимая сферическая форма, с индивидуальными для каждого пациента параметрами. Лучи эксимерного лазера не вызывают каких-либо изменений во внутренних структурах глаза, так как воздействие происходит только на одну из преломляющих сред — роговицу. В силу того, что форма роговицы меняется, лучи после лазерной коррекции фокусируются как раз на сетчатке и пациенту возвращается хорошее зрение.
  • кератопластика — это хирургическая операция, направленная на восстановление формы и функций роговицы, устранение врожденных и приобретенных после травм и болезней дефектов и деформаций, когда другие способы коррекции астигматизма невозможны. Эта операция заключается в замене участка роговицы глаза донорским или искусственным трансплантатом.

Дальнозоркость (гиперметропия) — вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка. Человеку становится сложно читать мелкий шрифт, особенно при плохом освещении, и выполнять любую ручную работу. Часто и вдаль люди с дальнозоркостью видят плохо, изображение становится размытым.

Врачи-офтальмологи выделяют три степени дальнозоркости:

  • слабую — до +1,0 диоптрии. В этом случае человек обычно видит и вдаль, и вблизи, но возможны жалобы на быструю утомляемость, головную боль, головокружение;
  • среднюю — до +5,0 диоптрий; зрение вдаль остается хорошим, а вблизи затруднено;
  • высокую — свыше +5,0 диоптрий; плохое зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

Практически у всех людей старше 50 лет развивается возрастная дальнозоркость (пресбиопия). При пресбиопии хрусталик глаза постепенно уплотняется, проявляется слабость ресничной мышцы, уменьшаются резервы аккомодационной способности глаза. Все это в результате ведет к ухудшению зрения вблизи. Пресбиопия корректируется с помощью очков для работы на близком расстоянии, контактных линз или заменой утратившего свою эластичность хрусталика на интраокулярную линзу, мультифокальную или аккомодирующую. В последнем случае операция проводится в режиме «одного дня», в течение 15–20 минут, под местной анестезией через самогерметизирующийся микроразрез размером 1,6 мм.

Определить то или иное отклонение рефракции от нормы и его величину врач-офтальмолог сможет только после тщательного комплексного обследования зрительной системы пациента. Полученные данные помогут определить, какому методу лечения следует отдать предпочтение в каждом конкретном случае.

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *