Меню Рубрики

Сердце проводящая система пучка ножки гиса

комплекс анатомических образований сердца (узлов, пучков и волокон), состоящих из атипичных мышечных волокон (сердечные проводящие мышечные волокна) и обеспечивающих координированную работу разных отделов сердца (предсердий и желудочков), направленную на обеспечение нормальной сердечной деятельности.

Координируя сокращений предсердий и желудочков, ПСС обеспечивает ритмичную работу сердца, т.е нормальную сердечную деятельность. В частности, ПСС именно обеспечивает автоматизм сердца.

o Синусно-предсердный узел (узел Киса-Флека) находится в стенке правого предсердия. Является главным, ведущим. Задает ритм, создавая импульсы.

o Предсердно-желудочковый узел (атриовентрикулярный; Ашофф-Тавара) находится в межпредсердной перегородке, ближе к желудочкам.

  • Пучок Гиса (предсердно-желудочковый пучок) отходит от предсердно-желудочкового узла и продолжается в межжелудочковую перегородку, где делится на 2 ножки (правую и левую), идущие к желудочкам.

Эти ножки называются волокнами Пуркинье и располагаются в стенках желудочков.

1 – синусно-предсердный узел 2 – предсердно – желудочковый узел

3 – пучок Гиса 4 – волокна Пуркинье

v Как происходит проводящая система сердца?

Возбуждающий импульс возникает в синусовом узле. из синусового узла достигает миокарда предсердий.

Ø По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):

· Передний путь (тракт Бахмана) — идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки — одна из которых подходит к АВУ, а другая — к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;

· Средний путь (тракт Венкебаха) — идет по межпредсердной перегородке к АВУ;

· Задний путь (тракт Тореля) — идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.

Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.

Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.

АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков.

Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.

Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма — 15-30 импульсов в минуту.

В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.

В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8306 — | 7252 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Пройти онлайн тест (экзамен) по данной теме.

Прежде, чем знакомиться с дальнейшим материалом, рекомендуется вкратце освежить анатомические знания сердечной мышцы.

Сердце — удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые «заставляют» сердце ритмично сокращаться, выполняя функцию кровяного насоса.

  1. синусно-предсердный узел (синусовый узел);
  2. левое предсердие;
  3. предсердно-желудочковый узел (атриовентрикулярный узел);
  4. предсердно-желудочковый пучок (пучок Гиса);
  5. правая и левая ножки пучка Гиса;
  6. левый желудочек;
  7. проводящие мышечные волокна Пуркинье;
  8. межжелудочковая перегородка;
  9. правый желудочек;
  10. правый предсердно-желудочковый клапан;
  11. нижняя полая вена;
  12. правое предсердие;
  13. отверстие венечного синуса;
  14. верхняя полая вена.

Рис.1 Схема строения проводящей системы сердца

  1. Начинается проводящая система сердца синусовым узлом (узел Киса-Флака), который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).
  2. Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм. По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.
  3. Атриовентрикулярный узел переходит в пучок Гиса, который состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.
  4. Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь — заднюю стенку левого желудочка, и нижние отделы боковой стенки.
    1. правая ножка пучка Гиса;
    2. правый желудочек;
    3. задняя ветвь левой ножки пучка Гиса;
    4. межжелудочковая перегородка;
    5. левый желудочек;
    6. передняя ветвь левой ножки;
    7. левая ножка пучка Гиса;
    8. пучок Гиса.

    На рисунке представлен фронтальный разрез сердца (внутрижелудочковой части) с разветвлениями пучка Гиса. Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки.

    Наиболее тонкими, следовательно уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки.

    Ножки пучка Гиса и их ветви состоят из двух видов клеток — Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.

  5. Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.

Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье — импульсы проводятся к сократительному миокарду.

Рассмотрим этот процесс подробно:

  1. Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
  2. Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
  3. По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):
    • Передний путь (тракт Бахмана) — идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки — одна из которых подходит к АВУ, а другая — к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;
    • Средний путь (тракт Венкебаха) — идет по межпредсердной перегородке к АВУ;
    • Задний путь (тракт Тореля) — идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.

  4. Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
  5. Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
  6. АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
  7. Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
  8. Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
  9. Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма — 15-30 импульсов в минуту.
  10. В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
  11. В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:

  1. синусовый узел (автоматический центр первого порядка) — обладает наибольшим автоматизмом;
  2. атриовентрикулярный узел (автоматический центр второго порядка);
  3. пучок Гиса и его ножки (автоматический центр третьего порядка).

В норме существует только один водитель ритма — это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

Проводящая система сердца способна проводить импульсы не только в прямом направлении — от предсердий к желудочкам (антеградно), но и в обратном направлении — от желудочков к предсердиям (ретроградно).

Пройти онлайн тест (экзамен) по данной теме.

источник

Для того чтобы синхронизировать сокращения отделов сердца, в них проходят проводящие пути. Они представлены особым видом клеток-пейсмекеров, отличающихся от остальных кардиомиоцитов. Их функция заключается в образовании и передаче нервных импульсов по миокарду для осуществления сокращения сердца. Если в какой-нибудь части происходит сбой, то у человека возникают различные нарушения ритма.

Структуры, входящие в проводящую систему сердца (ПСС), имеют высокую специализацию и сложный механизм взаимодействия. Научные дискуссии по поводу работы путей прохождения импульсов до сих пор не окончены.

Компонентами ПСС являются два узла – синусово-предсердный, синоатриальный (САУ) и предсердно-желудочковый, или атриовентрикулярный (АВУ). Первый узел, вместе с путями, проходящими по предсердиям и к АВУ, объединен в синоатриальный отдел, а АВУ и ножки пучка Гиса с мелкими волокнами Пуркинье включены во вторую, атриовентрикулярную часть.

В здоровом сердце он считается единственным генератором ритма. Его месторасположение находится в правом предсердии, вблизи полой вены. Между САУ и внутренним слоем сердца есть тонкая оболочка из мышечных волокон. По форме узел похож на полумесяц. От него отходят волокна к обоим предсердиям и полым венам. Соединение САУ и АВУ осуществляется при помощи межузловых путей:

  • передний – один пучок к левому предсердию, частично волокна по перегородке переходят к АВУ;
  • средний – в основном пролегает по перегородке;
  • задний – проходит полностью между предсердиями.

Рекомендуем прочитать статью о синоаурикулярной блокаде. Из нее вы узнаете о патологии, причинах ее развития, симптомах, диагностике и лечении.

А здесь подробнее о миграции водителя ритма.

Находится в правом предсердии внизу перегородки. Имеет вид диска или овала. В нем гораздо меньше соединительных клеток, чем в САУ, от остальной ткани предсердий отделен жировыми клетками. От него отходят пути Гиса в трех ветвях – передней, задней и атриовентрикулярной.

На уровне аортального синуса пучок Гиса располагается в позиции всадника над перегородкой между желудочками. В дальнейшем происходит его деление на правую и левую ножку.

Правая ножка более крупная, идет по перегородочной части миокарда, разветвляясь в мышце правого желудочка. У нее есть три ветки:

  • верхняя занимает треть расстояния до сосочковых мышц;
  • средняя идет до края перегородки;
  • нижняя направляется к основанию сосочковой мышцы.

Левая ножка Гиса анатомически выглядит как продолжение основной части пучка, она делится на:

  • переднюю – проходит по передней и боковой области левого желудочка;
  • заднюю – направляется к верхушке, задненижней части.

В дальнейшем ножки Гиса ветвятся по мышечному слою желудочков, образуя сеть волокон Пуркинье. Эти конечные части проводящей системы напрямую взаимодействуют с клетками миокарда.

Кардиомиоциты обладают способностью к образованию сигнала, его передаче по миокарду и сокращению стенок в ответ на возбуждение. Все основные свойства возможны только благодаря работе проводящей системы. Генерация электрического сигнала происходит в атипичных Р-клетках, которые названы от английского слова pacemaker, что означает водитель.

Среди них есть рабочие и резервные, включающиеся в деятельность сердца при разрушении истинных пейсмекеров.

Образованный в синусовом узле, биоимпульс проводится по миокарду с разной скоростью. Предсердия получают сигналы 1 м/с, передают их в АВУ, который задерживает их до 0,2 м/с. Это нужно для того, чтобы вначале могли сократиться предсердия, передать кровь в желудочки. Последующая скорость распространения по клеткам Гиса и Пуркинье доходит до 5 м/с.

Это придает миокарду желудочков синхронность при сокращении, потому что все клетки реагируют практически одновременно.

Если бы не было проводящих путей, то возбуждение мышечных клеток было бы последовательным и замедленным, что привело бы к потере половины давления потока крови, исходящего из желудочков.

Поэтому к основным функциям ПСС относятся:

  • самостоятельное изменение потенциала мембраны (автоматизм);
  • образование импульса с ритмичными промежутками;
  • последовательное возбуждение частей сердца;
  • одновременное сокращение желудочков для повышения эффективности систолического выброса крови.
Читайте также:  Пмк неполная блокада правой ножки пучка гиса

Смотрите на видео о строении сердца и его проводящей системы:

Принципом, по которому работает ППС, является иерархия. Это означает, что главным считается самый вышележащий источник импульсов, он обладает возможностью вырабатывать наиболее частые сигналы и «заставлять» усваивать их ритм. Поэтому все остальные части, несмотря на то, что могут сами генерировать волны возбуждения, подчиняются главному пейсмекеру.

В здоровом сердце основной водитель ритма – САУ. Его считают узлом первого порядка. Частота образуемых импульсов у синусового узла соответствует 60 — 80 за одну минуту.

По мере удаления от САУ способность к автоматизму слабеет. Поэтому, если пострадает синусовый узел, то его функцию возьмет на себя АВУ. При этом ритм сердца замедляется до 50 ударов. Если роль водителя ритма будет у ножек Гиса, то больше 40 импульсов в минуту они не смогут образовать. Спонтанное возбуждение волокон Пуркинье генерирует очень редкие удары – до 20 за минуту.

Поддержание скорости движения сигналов возможно благодаря контактам между клетками. Они называются нексусами, за счет низкого сопротивления электрическому току задают правильное направление и быстрое проведение сердечных импульсов.

Рекомендуем прочитать статью о предсердной экстрасистолии. Из нее вы узнаете о причинах патологии, ее симптомах у детей и взрослых, методах диагностики и лечения, а также о мерах профилактики.

А здесь подробнее об аритмии и брадикардии.

Все главные функции миокарда (автоматизм, возбудимость, проводимость и сократимость) осуществляются благодаря работе проводящей системы. Процесс возбуждения начинается в синусовом узле. Он работает с частотой 60 — 80 импульсов за минуту.

Сигналы по нисходящим волокнам достигают предсердно-желудочкового узла, немного задерживаются, чтобы сократились предсердия, и по пучку Гиса достигают желудочков. Мышечные волокна в этой зоне сокращаются синхронно, так как скорость импульсов максимальная. Такое взаимодействие обеспечивает эффективный сердечный выброс и ритмичную работу отделов сердца.

Довольно существенные проблемы могут причинить человеку дополнительные проводящие пути. Такая аномалия в сердце может приводить к одышке, обморокам и другим неприятностям. Лечение проводится несколькими методами, в т.ч. выполняется эндоваскулярная деструкция.

Знать особенности строения сердца человека, схему движения крови, анатомические особенности внутреннего строения у взрослых и ребенка, а также круги кровообращения полезно каждому. Это поможет лучше понять свое состояние при проблемах с клапанами, предсердиями, желудочками. Какой цикл работы сердца, с какой стороны оно находится, как выглядит, где его границы? Почему стенки предсердий тоньше желудочков? Что такое проекция сердца.

При экстрасистолии, мерцательной аритмии, тахикардии применяют препараты как новые, современные, так и старого поколения. Актуальная классификация антиаритмических препаратов позволяет быстрее сделать выбор из групп, основываясь на показаниях и противопоказаниях

Для тех, кто подозревает у себя проблемы с ритмом сердца, полезно знать причины и симптомы мерцательной аритмии. Почему она возникает и развивается у мужчин и женщин? В чем отличия пароксизмальной и идиопатической мерцательной аритмии?

Такой неприятный диагноз, как синдром слабости синусового узла, иногда можно встретить даже у детей. Как он проявляется на ЭКГ? Какие признаки патологии? Какое лечение назначит врач? Можно ли в армию при СССУ?

Такое заболевание, как предсердная экстрасистолия, может быть одиночная, частая или редкая, идиопатическа, политропная, блокированная. Какие у нее признаки и причины появления? Как проявится на ЭКГ? Какое лечение возможно?

При изменении структуры сердца может появиться неблагоприятный признак — миграция водителя ритма. Это касается суправентрикулярного, синусового, по предсердиям водителя ритма. Эпизоды могут обнаружиться у взрослых и детей на ЭКГ. Лечение необходимо только при жалобах.

Определяется внутрижелудочковая проводимость сердца по показаниям на ЭКГ. Причины местных, локаных нарушений у детей, подростков и взрослых отличаются. Какую роль играет ВПС?

Выявляет нижнепредсердный ритм преимущественно на ЭКГ. Причины кроются в ВСД, поэтому может быть установлен даже у ребенка. Ускоренное биение сердца требует лечения в крайнем случае, чаще назначается немедикаментозная терапия

источник

Проводящая система сердца отвечает за его главную функцию — сокращения. Она представлена несколькими узлами и проводящими волокнами. Правильное функционирование этой системы обеспечивает нормальный сердечный ритм.

Если же возникают какие-то нарушения, развиваются разного рода аритмии. В статье представлена система проведения импульсов по сердцу. Описано значение проводящей системы, её состояние в норме и при патологии.

Что такое проводящая система сердца? Это комплекс специализированных кардиомиоцитов, обеспечивающих распространение электрического импульса по миокарду. Благодаря этому реализуется основная функция сердца — сократительная.

Анатомия проводящей системы представлена следующими элементами:

  • синоатриальный узел (Кисс-Флака), расположенный в ушке правого предсердия;
  • пучок межпредсердного проведения, идущий к левому предсердию;
  • пучок межузлового проведения, идущий к следующему узлу;
  • атриовентрикулярный узел проводящей системы сердца (Ашоффа-Тавара), расположенный между правым предсердием и желудочком;
  • пучок Гиса, имеющий левую и правую ножки;
  • волокна Пуркинье.

Такое строение проводящей системы сердца обеспечивает охват каждого участка миокарда. Рассмотрим подробнее схему проводящей системы сердца человека.

Является главным элементом проводящей системы сердца, который называют водителем ритма. При нарушении его функции водителем ритма становится следующий по порядку узел. Синоатриальный узел располагается в стенке правого предсердия, между его ушком и отверстием верхней полой вены. САУ прикрыт внутренней сердечной оболочкой — эндокардом.

Узел имеет размеры 12х5х2 мм. К нему подходят симпатические и парасимпатические нервные волокна, которые обеспечивают регуляцию функции узла. САУ вырабатывает электрические импульсы — в диапазоне 60-80 за минуту. Именно такая нормальная частота сокращений сердца у здорового человека.

Также к проводящей системе сердца относятся пучки Бахмана, Венкебаха и Тореля.

Этот элемент проводящей системы расположен в углу между основанием правого предсердия и межпредсердной перегородкой. Его размеры — 5х3 мм. Узел задерживает часть импульсов от водителя ритма и передаёт их на желудочки с частотой 40-60 в минуту.

Это проводящий путь сердца, который обеспечивает связь между миокардом предсердий и желудочков. В межжелудочковой перегородке происходит его разветвление на две ножки, каждая из которых идёт к своему желудочку.

Длина общего ствола составляет от 8 до 18 мм. Он проводит импульсы с частотой 20-40 в минуту.

Это концевая часть проводящей системы. Волокна отходят от ножек пучка Гиса и обеспечивают передачу импульсов на все участки миокарда желудочков. Частота передачи — не более 20 в минуту.

Как работает проводящая система сердца?

Вследствие раздражения САУ в нем происходит выработка электрического импульса. По трём проводящим пучкам он распространяется на оба предсердия и достигает АВ-узла. Здесь происходит задержка импульса, которая обеспечивает последовательность сокращений предсердий и желудочков.

Далее импульс переходит на пучок Гиса и волокна Пуркинье, которые подходят уже к сократительным клеткам. Здесь электрический импульс угасает. Слаженная деятельность всех элементов называется сердечным автоматизмом. Наглядно проводящую систему сердца можно увидеть в видео в этой статье.

Под воздействием внешних и внутренних причин в проводящей системе могут возникать различные нарушения. Чаще они обусловлены органическими поражениями миокарда или при аномалиях проводящих путей сердца.

Нарушения проведения импульса бывают двух типов:

  • с ускорением проведения;
  • с замедлением проведения.

В первом случае развиваются различные тахиаритмии, во втором — брадиаритмии и блокады.

В данном случае страдает синоатриальный узел и межпредсердные/межузловые пучки.

Таблица. Нарушения проводимости предсердий:

Форма Характеристика Инструкция по лечению
Предсердная тахикардия Не считается заболеванием. Наблюдается увеличение частоты сокращений до 100 в минуту. Обусловлено обычно внесердечными причинами — страх, напряжение, боль, лихорадка Специфического лечения не требует
Синдром слабости синусового узла Снижение способности САУ к генерации импульсов. Является причиной предсердной тахикардии, фибрилляции предсердий Лечение проводится антиаритмическими препаратами или установкой кардиостимулятора
Синоатриальная блокада Замедление или полное прекращение проведения импульсов от САУ к предсердиям. Выделяют три степени тяжести. Третья степень представлена полным прекращением функции САУ, в результате чего возникает асистолия или функция водителя ритма переходит к АВ-узлу. Причинами являются обезвоживание, передозировка лекарств Лечение симптоматическое, при тяжелой степени рекомендуется установка искусственного водителя ритма
Фибрилляция предсердий Нерегулярное сокращение отдельных участков миокарда предсердий, достигающее частоты 350-400 в минуту. Бывает приступообразной и постоянной. Чаще развивается на фоне органических заболеваний сердца Лечение проводится антиаритмическими препаратами
Трепетание предсердий Регулярное сокращение предсердий с частотой 250-350 в минуту. Также бывает приступообразным или постоянным, развивается на фоне органических поражений миокарда Лечение проводится антиаритмическими средствами

Предсердные нарушения проводимости возникают реже и протекают легче, чем нарушения внутрижелудочковой проводимости.

AV-проводимость — это процесс передачи импульса от САУ на желудочки сердца через АВ-узел. При замедлении или полном прекращении передачи импульса развиваются АВ-блокады.

Выделяют три степени этого состояния:

  1. Удлинение интервала P-Q более 0,2 с. Наблюдается при обезвоживании, передозировке сердечных гликозидов. Клинически не проявляется.
  2. Эта степень подразделяется на 2 типа — Мобитц 1 и Мобитц 2. В первом случае наблюдается постепенное удлинение интервала P-Q, пока не произойдет выпадение желудочкового комплекса. Во втором слечае желудочковый комплекс выпадает без предыдущего удлинения интервала P-Q. Причинами АВ-блокады второй степени являются органические поражения сердца.
  3. При третьей степени импульс от САУ на желудочки не проводится. Они сокращаются в собственном ритме под влиянием импульсов от волокон Пуркинье. Клиническая картина представлена частыми головокружениями, обмороками.

Лечение при первой степени не требуется, при второй и третьей устанавливают кардиостимулятор.

В результате замедления проведения импульса по пучку Гиса возникает полная или неполная блокада его ножек. Неполная блокада клинически не проявляется, на ЭКГ имеются преходящие изменения. Полная блокада чаще встречается на правой ножке, чем на левой. Возникать может на фоне полного здоровья, либо при наличии органических поражений сердца.

Если желудочковая проводимость нарушена в сторону ускорения, возникают тахиаритмии.

Таблица. Виды желудочковых тахиаритмий:

Форма Характеристика Лечение
Пароксизмальная тахикардия Происходит учащение желудочковых сокращений до 140-200 в минуту. Возникает на фоне органических поражений миокарда. Проявляется головокружением, приступами потери сознания Лечение специфическое
Фибрилляция желудочков Частота сокращений миокарда желудочков до 280 в минуту Реанимация
Трепетание желудочков Хаотичный ритм, затем остановка кровообращения Реанимация

Если нарушена внутрижелудочковая проводимость, наблюдается более худший прогноз, чем при нарушении проведения по предсердиям.

Для выявления нарушений проводимости сердца используют инструментальные методы диагностики и функциональные пробы. Диагностировать нарушения можно даже у плода.

Таблица. Методы определения сердечной проводимости:

Метод Характеристика
Кардиотокография Это метод, позволяющий оценить функцию сердца плода. Как проводится КТГ? Используется ультразвуковой датчик, который регистрирует частоту сердечных сокращений. Одновременно регистрируется тонус матки
Электрокардиография Основной метод, регистрирующий любые изменения проводимости сердца — это ЭКГ. Метод основан на регистрации специальным аппаратом электрических потенциалов сердца, затем осуществляется их графическая запись
УЗИ сердца Позволяет выявить изменения основных частей проводящей системы сердца, органические поражения миокарда
Чреспищеводное электрофизиологическое исследование Изучение сократимости сердца при воздействии на него физиологическими дозами тока. Как проводится ЧПЭФИ сердца? Для этого проводят по пищеводу электрод таким образом, чтобы его конец встал напротив левого желудочка. Затем подается электроток и записывается ответ миокарда на раздражение

На основании полученных данных устанавливается диагноз, определяется лечебная тактика.

Проводящая система сердца — это комплекс специализированных кардиомиоцитов, обеспечивающих последовательное и согласованное сокращение миокарда. При наличии органических заболеваний или при воздействии внешних причин нарушается физиология сокращений, возникают аритмии. Диагностика проводится с помощью инструментальных методов. Лечение зависит от вида аритмии.

Добрый день. Меня часто беспокоят головокружения, чувство замирания сердца. А недавно потеряла сознание. Врач назначил мне обследование, в том числе велоэргометрию. Как проводится это исследование и для чего оно назначается?

Добрый день, Ирина. Велоэргометрия, или тредмил-тест — это функциональная проба, позволяющая оценить компенсаторные возможности миокарда. Применяется для определения скрытых нарушений ритма, ИБС.

Судя по вашим симптомам, врач подозревает у вас нарушение желудочковой проводимости. Пациенту предлагают сесть на специальный велосипед или беговую дорожку. Регистрируется время, за которое при физической нагрузке увеличится частота сокращений сердца.

Здравствуйте. У меня беременность 34 недели, ребенок шевелится меньше, чем положено. Акушер назначил мне КТГ плода — как проводят эту процедуру?

Добрый день, Анна. КТГ — это метод, оценивающий частоту сокращений сердца плода. Назначается при подозрении на внутриутробную гипоксию. Проводится с помощью специального ультразвукового датчика. Процедура абсолютно безболезненна и безопасна.

источник

Проводящая система сердца начинается синусовым узлом, который расположен в верхней части правого предсердия. Его длина 10-20 мм, ширина 3-5 мм. Именно в нем возникают импульсы, которые вызывают возбуждение и сокращение всего сердца. Нормальный автоматизм синусового узла составляет 50-80 импульсов в минуту. Синусовый узел является автоматическим центром I порядка.

Импульс, возникший в синусовом узле мгновенно распространяется по предсердиям, заставляя их сократиться. Но распространиться дальше и сразу же возбудить желудочки сердца эта волна не может, так как миокард предсердий и желудочков разделен фиброзной тканью, которая не пропускает электрические импульсы. И только в одном месте этой преграды не существует. Туда и устремляется волна возбуждения. Но именно в этом месте находится следующий узел проводящей системы, который называется атриовентрикулярным (длина около 5 мм, толщина — 2 мм). В нем происходит задержка волны возбуждения и фильтрация входящих импульсов.

Далее нижняя часть узла, утончаясь, переходит в пучок Гиса (длина 20 мм). В последующем пучок Гиса разделяется на две ножки — правую и левую. Правая ножка проходит по правой стороне межжелудочковой перегородки и разветвляясь ее волокна (волокна Пуркинье) пронзают миокард правого желудочка. Левая ножка проходит по левой половине межжелудочковой перегородки и делится на переднюю и заднюю ветви, которые снабжают волокнами Пуркинье миокард левого желудочка. После задержки в результате прохождения атриовентрикулярного узла волна возбуждения, распространяясь по ножкам пучка Гиса и волокнам Пуркинье, мгновенно охватывает всю толщу миокарда желудочков, вызывая их сокращение. Задержка импульса имеет огромное значение и не дает сократиться предсердиям и желудочкам одновременно — сперва сокращаются предсердия, и только вслед за этим — желудочки сердца.

Читайте также:  Что такое преходящая блокада левой ножки пучка гиса

В атриовентрикулярном узле, так же как и в синусовом узле, имеются два вида клеток — Р и Т. Атриовентрикулярный узел вместе с начальной частью пучка Гиса является автоматическим центром II порядка, который может самостоятельно вырабатывать импульсы с частотой 35-50 в минуту.

Конечная часть пучка Гиса, его ножки и волокна Пуркинье также обладают автоматизмом, однако могут вырабатывать импульсы лишь с частотой 15-35 в минуту и являются автоматическим центром III порядка.

Между автоматическими центрами I, II и III порядков возникают следующие взаимодействия. В норме импульс, возникающий в синусовом узле, распространяется на предсердия и желудочки, вызывая их сокращения. Проходя на своем пути автоматические центры II и III порядков импульс каждый раз вызывает разрядку этих центров. После этого в автоматических центрах II и III порядков снова начинается подготовка очередного импульса, которая каждый раз вновь прерывается после прохождения возбуждения из синусового узла. По сути дела, в норме автоматический центр I порядка подавляет активность автоматических узлов II и III порядков. И только в случае отказа синусового узла или нарушения проведения его импульсов на нижележащие отделы включается автоматический узел II порядка, а при его отказе — автоматический узел III порядка.

Регуляция и координация сократительной функции сердца осуществляются его проводящей системой. Проводя­щая система сердца образована атипичными кардиомиоцитами (сердечные проводящие кардиомиоциты). Эти кардиомиоциты богато иннервированы, имеют небольшие размеры (длина — около 25 мкм, толщина — 10 мкм) по сравнению с кардиомио­цитами миокарда. Клетки проводящей системы не имеют Т-тру-бочек, соединяются между собой не только концами, но и боко­выми поверхностями. Эти клетки содержат значительное коли­чество цитоплазмы и мало миофибрилл. Клетки проводящей системы обладают способностью проводить раздражение от нервов сердца к миокарду предсердий и желудочков. Сердце обладает автоматизмом — способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца. Рассмотрим компоненты проводящей системы сердца:синусно-предсердный узел,предсердно-желудочковый узел,пучок Гиса с его левой и правой ножкой,волокна Пуркинье. 1)синусно-предсердный узел (= синусовый, синоатриальный)— источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово “синус” в переводе означает “пазуха”, “полость”. Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте — синусно-предсердном узле. Нормальная частота ритма в покое — от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 — тахикардия. У тренированных людей обычно наблюдается брадикардия. 2) предсердно-желудочковый узел (атриовентрикулярный, AV; от лат. ventriculus — желудочек) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков — 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочк 3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви — переднюю и заднюю.4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков. Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту.

источник

Мотор и пламенный двигатель человеческого организма — сердце, совершает огромную работу, перекачивая около 290 литров крови каждый час, если человек находится в состоянии покоя. При физической нагрузке на организм, объём проходящей крови через сердце гораздо больше.

Кроме насосной функции, обеспечивающей беспрестанное движение крови по сосудам, сердце обладает другими важными функциями, которые делают его уникальным органом.

Сердечные клетки способны сами вырабатывать или генерировать электрические импульсы. Эта функция наделяет сердце некой степенью свободы или автономности: мышечные клетки сердца независимо от прочих органов и систем человеческого тела способны сокращаться с определённой частотой. Напомним, что частота сокращений в норме от 60 до 90 ударов в минуту. Но все ли сердечные клетки наделены данной функцией?

Нет, в сердце существует особая система, которая включает специальные клетки, узлы, пучки и волокна — это проводящая система. Клетки проводящей системы — это клетки сердечной мышцы, кардиомиоциты, но только необычные или атипичные, называются они так, поскольку способны вырабатывать и проводить импульс к другим клеткам.

1. СА-узел. Синоатриальный узел или центр автоматизма первого порядка еще могут называть синусовым, синусно-предсердным, либо узлом Киса-Флека. Расположен в верхней части правого предсердия в синусе полых вен. Это важнейший центр проводящей системы сердца, потому что в нем есть клетки-пейсмекеры (pacemaker или P-клетки), которые и генерируют электрический импульс. Возникающий импульс обеспечивает формирование между кардиомиоцитами потенциала действия, формируется возбуждение и сердечное сокращение. Синоатриальный узел, как и другие отделы проводящей системы, обладает автоматизмом. Но именно СА-узел обладает автоматизмом в большей степени, и в норме он подавляет все другие очаги возникающего возбуждения. Т.е Помимо Р-клеток, в узле есть ещё Т-клетки, которые проводят возникший импульс к предсердиям.

2. Проводящие пути. От синусового узла возникшее возбуждение передаётся по межпредсердному пучку и межузловым трактам. 3 межузловых тракта — передний, средний, задний могут еще сокращённо обозначать латинскими буквами по первой букве фамилии учёных, описавших эти структуры. Передний обозначают буквой B (описал данный тракт немецкий учёный Bachman), средний — W (в честь патологоанатома Wenckebach, задний — T (по первой букве изучавшего задний пучок учёного Thorel). Межпредсердный пучок соединяет правое предсердие с левым при передаче возбуждения, межузловые тракты несут возбуждение от синусового узла к следующему звену проводящей системы сердца со скоростью около 1 м/с.

3. АВ-узел. Атриовентрикулярный узел (по автору узел Ашофа-Тавара) находится внизу правого предсердия у межпредсердной перегородки, причём располагается он чуть вдаваясь в перегородку между верхними и нижними сердечными камерами. Этот элемент проводящей системы имеет относительно немаленькие размеры 2×5 мм. В АВ-узле проводимость возбуждения затормаживается примерно на 0,02-0,08 сек. И природа эту задержку предусмотрела не зря: замедление импульсации необходимо сердцу для того, чтобы верхние сердечные камеры успели сократиться и переместить кровь в желудочки. Время проведения импульса по атриовентрикулярному узлу равно 2-6 см/c. — это самая низкая скорость распространения импульсации. Представлен узел Р- и Т-клетками, причём Р-клеток значительно меньше, чем Т-клеток.

Проводящая система сердца. Пучок Гиса

4. Пучок Гиса. Он располагается ниже АВ-узла (чёткой грани между ними провести не удаётся) и анатомически делится на две ветви или ножки. Правая ножка является продолжением пучка, а левая отдаёт заднюю и переднюю ветви. Каждая из вышеописанных ветвей отдаёт маленькие, тонкие, ветвящиеся волокна, которые называются волокнами Пуркинье. Скорость импульсации пучка — 1 м/c., ножек — 3-5м/с.

5. Волокна Пуркинье — заключительный элемент проводящей системы сердца.

В клинической врачебной практике часто встречаются случаи нарушения в работе проводящей системы в области передней веточки левой ножки и правой ножки тракта Гиса, также нередко встречаются нарушения работы синусного узла сердечной мышцы. При «поломке» синусового узла, АВ-узла развиваются различные блокады. Нарушение работы проводящей системы может приводить к возникновению аритмий.

Такова физиология и анатомическое строение проводящей нервной системы. Также можно обособить конкретные функции проводящей системы. Когда ясны функции, становится очевидным важность данной системы.

Центры автоматизма работы сердца

1) Генерация импульсов. Синусный узел является центром автоматизма 1 порядка. В здоровом сердце синоатриальный узел — лидер по выработке электрических импульсов, обеспечивающий частоту и ритмичность сердечных толчков. Основная его функция — выработка импульсов с нормальной частотой. Синусный узел задаёт тон частоте сердечных толчков. Импульсы он вырабатывает с ритмом 60-90 ударов в минуту. Именно такая ЧСС для человека является нормой.

Атриовентрикулярный узел является центром автоматизма 2 порядка, он производит импульсы 40-50 в минуту. Если синусный узел по той или иной причине выключается из работы и не может главенствовать в работе проводящей системы сердца, его функцию берет на себя АВ-узел. Он становится «главным» источником автоматизма. Пучок Гиса и волокна Пуркинье — центры 3-го порядка, в них происходит импульсация с частотой 20 в минуту. Если 1 и 2 центры выходят из строя, центр 3-го порядка берёт на себя главенствующую роль.

2) Подавление возникающей импульсации из других патологических источников. Проводящая система сердца «фильтрует и выключает» патологическую импульсацию из других очагов, добавочных узлов, которые в норме не должны быть активны. Так поддерживается нормальная физиологическая сердечная деятельность.

3) Проведение возбуждения от вышележащих отделов к нижележащим или нисходящее проведение импульсов. В норме возбуждение охватывает сначала верхние сердечные камеры, а затем желудочки, за это также ответственны центры автоматизма и проводящие тракты. Восходящее проведение импульсов в здоровом сердце невозможно.

Дополнительные пучки проводящей системы

Нормальную сердечную деятельность обеспечивают вышеописанные элементы проводящей системы сердца, но при патологических процессах в сердце могут активироваться дополнительные пучки проводящей системы и примерять на себя роль основных. Дополнительные пучки в здоровом сердце не активны. При некоторых заболеваниях сердца они активизируются, что вызывает нарушения сердечной деятельности, проводимости. К таким «самозванцам», нарушающим нормальную сердечную возбудимость, относят пучок Кента (правый и левый), Джеймса.

Пучок Кента связывает верхние и нижние сердечные камеры. Пучок Джеймса связывает центр автоматизма 1 порядка с нижележащими отделами также в обход АВ-центра. Если эти пучки активны, они как бы «выключают» АВ-узел из работы, и возбуждение идет через них на желудочки намного быстрее, чем это положено в норме. Формируется так называемый обходной путь, по которому импульсация приходит в нижние сердечные камеры.

А поскольку путь прохождения импульса через добавочные пучки короче, чем в норме, желудочки возбуждаются раньше, чем должны — процесс возбуждения сердечной мышцы нарушается. Чаще такие нарушения фиксируются у мужчин (но женщины также могут их иметь) в виде синдрома WPW, либо при других сердечных проблемах — аномалии Эбштейна, пролапсе двустворчатого клапана. Активность таких «самозванцев» не всегда клинически выражена, особенно в молодом возрасте, может стать случайной ЭКГ-находкой.

А если клинические проявления патологической активации дополнительных трактов проводящей системы сердца присутствуют, то они проявляют себя в виде учащённого, неритмичного сердцебиения, ощущения провалов в области сердца, головокружения. Диагностируют такое состояние при помощи ЭКГ, холтеровского мониторирования. Бывает, что могут функционировать как нормальный центр проводящей системы — АВ-узел, так и дополнительный. В этом случае на ЭКГ-приборе будет регистрироваться оба пути импульсации: нормальный и патологический.

Тактика лечения пациентов с нарушениями проводящей системы сердца в виде активных дополнительных трактов индивидуальна в зависимости от клинических проявлений, тяжести заболевания. Лечение может быть как медикаментозным, так и хирургическим. Из хирургических методов на сегодняшний день популярен и наиболее эффективен метод разрушения зон патологической импульсации электрическим током при помощи специального катетера — радиочастотная абляция. Этот метод еще и щадящий, поскольку позволяет избежать операции на открытом сердце.

источник

Миокард предсердий и желудочков, разделенный фиброзными кольцами, синхронизируется в своей работе проводящей системой сердца, единой для всех его отделов (рис. 1.30).

Рис. 1.30. Схематическое изображение проводящей системы сердца: 1 — верхняя полая вена; 2 — синусно-предсердный узел; 3 — передний межузловой и межпредсердный тракт Бахмана; 4 — средний межузловой тракт Венкебаха; 5 — задний межузловой тракт Горела; 6 — предсердно-желудочковый узел; 7 — предсердно-желудочковый пучок; 8 — левая ножка предсердно-желудочкового пучка; 9 — правая ножка пучка Гиса; 10 — субэндокардиальная сеть волокон Пуркинье; 11 — нижняя полая вена; 12 — венечный синус; 13 — передняя ветвь левой ножки пучка Гиса; 14 — аорта; 15 — задний легочный ствол.

Структуры, генерирующие и передающие импульсы к предсердным и вентрикулярным кардиомиоцитам, регулирующие и координирующие сократительную функцию сердца, специализированы и сложны. Проводящая система сердца по своей гистоструктуре и цитологическим характеристикам существенно отличается от других отделов сердца. Анатомически проводящая система включает синусно-предсердный и предсердно-желудочковый узлы, межузловые и межпредсердные проводящие пути, предсердно-желудочковый пучок (пучок Гиса) специализированных мышечных клеток, отдающий левую и правую ножки, субэндокардиальную сеть волокон Пуркинье.

Синусно-предсердный узел расположен с латерильной стороны над основанием правого ушка у места впадения верхней полой вены в правое предсердие, от эндокарда которого его отделяет тонкая прослойка соединительной и мышечной ткани. Имеет форму уплощенного эллипса или полумесяца, горизонтально расположенного под эпикардом правого предсердия. Длина узла 10–15 мм, высота — до 5 мм, толщина — около 1,5 мм. Визуально узел слабо отличим от окружающего его миокарда, несмотря на капсулоподобное скопление соединительной ткани по периферии.

Ткань синусно-предсердного узла почти на 30% состоит из переплетающихся в различных направлениях пучков коллагеновых фибрилл различной толщины с небольшим количеством эластических волокон и клеток соединительной ткани. Тонкие мышечные волокна из специализированных клеток диаметром 3–4,5 мк расположены беспорядочно с неравномерными промежутками, выполненными интерстицием, микрососудами, нервными элементами, ориентированы по окружности сосуда, лишь вблизи центральной артерии, питающей узел. По периферии узел окружен значительным количеством фиброэластической ткани с обширной сетью капилляров, здесь же расположены нервные ганглии, единичные ганглиозные клетки и нервные волокна, в большом количестве проникающие в ткань узла.

Читайте также:  Дистальная блокада левой ножки пучка гиса

Синусно-предсердный узел дает начало множественным путям, которые проводят импульсы, генерируемые специализироваными клетками. От него отходят латеральные пучки к правому ушку, нередко — горизонтальный пучок к левому ушку, задний горизонтальный пучок к левому предсердию и устьям легочных вен, пучки к верхней и нижней полым венам, медиальные пучки к межвенозному мышечному пучку миокарда. Данные мышечные пучки проводящей системы являются факультативными анатомическими образованиями, отсутствие того или иного из них может не оказывать заметного влияния на работу сердечной мышцы.

Межузловые пути проведения импульсов

Наиболее функционально значимыми являются нисходящие пути. Передний межузловой тракт, пучок Бахмана, берет начало от переднего края синусно-предсердного узла, проходит спереди и влево от верхней полой вены по направлению к левому предсердию, продолжаясь до уровня левого ушка. От пучка Бахмана ответвляется передний межузловой пучок, далее самостоятельно следующий в межпредсердной перегородке до предсердно-желудочкового узла. Средний меж узловой тракт, пучок Венкебаха, отходит от верхнего и заднего краев синусно- предсердного узла. Проходит единым пучком позади верхней полой вены, разделяясь затем на две неравные части, меньшая из которых следует до левого предсердия, а основная продолжается по межпредсердной перегородке до предсердно-желудочкового узла. Задний межузловой тракт, пучок Тореля, выходит из заднего края синусно-предсердного узла. Он рассматривается как основной путь межузлового проведения импульсов, его волокна следуют по пограничному гребешку, образуют основную долю волокон евстахиева гребня, следуя далее до предсердно-желудочкового узла по межпредсердной перегородке. Часть волокон перегородочной части всех трех трактов переплетается в непосредственной близости от предсердно-желудочкового узла, проникая в него на разных уровнях. Отдельные волокна межпредсердных и межузловых трактов по структуре сходны с волокнами Пуркинье желудочков, другие состоят из обычных предсердных кардиомиоцитов.

Предсердно-желудочковый узел обычно локализован под эндокардом правого предсердия на правом фиброзном треугольнике в нижней части межпредсердечной перегородки, над прикреплением септальной створки правого AV-клапана и несколько спереди от устья венечного синуса. Чаще всего овоидной, веретенообразной, дисковидной или треугольной формы, его размеры колеблятся в пределах от 6х4х05 до 11х6х1 мм.

В структуре предсердно-желудочкового узла, как и в рабочем миокарде, мышечный компонентпреобладает над соединительной тканью. В отличие от синусно-предсердного узла, он является мышечным образованием с менее развитым соединительнотканным остовом. Ткань узла как бы разграничена на две части крово снабжающей его артерией и пластинкой соединительной ткани, соединяющей стенку этого сосуда и фиброзное кольцо. От остальной ткани правого предсердия узел отделяет прослойка жировой клетчатки. Между предсердно-желудочковым узлом и устьем венечного синуса компактно размещены многочисленные парасимпатические ганглии. У мышечных волокон толщиной до 5 мкм продольное, косое и поперечное направление. Тесно переплетаясь, они образуют лабиринты, влияющие на электрофизиологические свойства ткани.

От предсердно-желудочкового узла отходят верхний, задний и предсердно-желудочковый пучки Гиса, причем только последний выявляют в 100% наблюдений. Границей между пучком Гиса, отходящим от передней части предсердно-желудочкового узла, является его суженный участок, перфорирующий правый фиброзный треугольник в месте соединения с верхней перепончатой частью межжелудочковой перегородки. Длина пучка колеблется в пределах 8–20 мм при ширине 2–3 мм, толщине 1,5–2 мм и коррелирует с формой сердца.

По длиннику пучок Гиса слагается из двух частей: короткой интрафиброзной, проходящей сквозь ткань правого фиброзного треугольника, и более протяженной перегородочной, залегающей в межжелудочковой перегородке в виде серовато-бледного тяжа, который с возрастом приобретает желтоватый оттенок из-за накопления жировой ткани. На поперечных разрезах составляющие его мышечные волокна разделены соединительнотканными прослойками на группы, консолидированы в виде неправильного треугольника или фигуры овоидной формы. Предсердно-желудочковый пучок Гиса по всему периметру окружен плотной фиброзной тканью, размер его клеток возрастает по мере удаления от узла.

Под перепончатой частью, на уровне правого синуса аорты, пучок Гиса раздваивается на две ножки, как бы «седлая» гребень мышечного участка межжелудочковой перегородки. Более мощная правая ножка, сохраняющая вид пучка, проходит по правожелудочковой стороне межжелудочковой перегородки, отдавая ветви всем стенкам ПЖ. В большинстве случаев ее удается проследить до основания передней сосочковой мышцы, и лишь в отдельных наблюдениях она теряется уже на уровне середины межжелудочковой перегородки.

Топографически правая ножка пучка Гиса подразделяется на верхнюю, составляющую треть длины до основания перегородочных сосочковых мышц, среднюю — до перегородочно-краевой трабекулы, и нижнюю, расположенную в ней и в основании передней сосочковой мышцы. Верхняя часть этой ножки проходит субэндокардиально, следующая — интрамурально, а нижняя вновь возвращается под эндокард. Нижний участок ножки дает начало дистальным ветвям: передним, идущим к передней стенке желудочка, задним — к трабекулам задней стенки желудочка, и латеральным, следующим к правому краю сердца.

Левая ножка предсердно-желудочкового пучка появляется под эндокардом левой стороны межжелудочковой перегородки из-под задненижнего края перепончатой части перегородки между желудочками на уровне синусов аорты. В левой ножке различают стволовую и разветвленную части. Стволовая разделяется на переднюю ветвь, идущую к передней стенке ЛЖ и расположенной на ней сосочковой мышце, задняя — к его задней стенке и сосочковой мышце. При делении ножки на большее количество ветвей дополнительные ответвления следуют к верхушке сердца.

На периферии вторичные ветви левой ножки рассыпаются на более мелкие пучки, которые входят в трабекулы и образуют сетевидные связи между собой. Пучковые строения менее компактной левой ножки и обеих ее ветвей, направляющихся к передней и задней сосочковым мышцам, как и их граница с тканью рабочего миокарда, выражены значительно слабее, чем правой. Соединительнотканный и сосудистый компонент в них представлены хуже, чем в других участках проводящей системы. Клетки проводящей системы образуют под эндокардом сильно ветвящуюся сеть, элементы которой разграничиваются соединительнотканными прослойками, включающими сосудистые и нервные структуры.

Структура клеточных элементов

Строение клеток проводящей системы сердца определяется их функциональной специализацией. В ее неоднородном клеточном составе по морфофункциональным признакам выделяюттри типа специализированных кардиомиоцитов. Клетки I типа — П-клетки, типичные нодальные или ведущие пейсмейкерные — неправильной удлиненной формы. Эти небольшие миоциты диаметром 5–10 нм, со светлой саркоплазмой и довольно крупным центрально расположенным ядром отдают многочисленные цитоплазматические отростки, сужающиеся к концам и плотно переплетающиеся между собой. П-клетки образуют небольшие группы — кластеры, разграниченные элементами рыхлой соединительной ткани. Кластеры П-клеток окружены общей базальной мембраной толщиной 100 нм, глубоко проникающей в межклеточные щели. Их сарколемма образует многочисленные кавеолы, а вместо Т-системы — нерегулярно определяющиеся глубокие туннельные инвагинации диаметром 1–2 мкм, в которые проникает интерстиций и иногда — нервные элементы.

Контрактильный аппарат П-клеток представлен редкими, хаотично перекрещивающимися миофибриллами либо произвольно ориентированными свободно лежащими тонкими и толстыми протофибриллами и их пучками, нередко в комплексе с полирибосомами. Тонкие миофибриллы состоят из рыхло упакованных филаментов с небольшим количеством саркомеров, диски которых выражены нечетко, Z-линии неодинаковой толщины, иногда прерывисты, а электронно-оптически плотное вещество часто выходит за пределы миофибрилл. Объем, занимаемый миофибриллами в П-клетках, составляет не более 25% такового в вентрикулярных кардиомиоцитах. Редкие митохондрии неодинакового размера и формы с внутренней структурой, значительно упрощенной в сравнении с клетками рабочего миокарда, беспорядочно разбросаны в обильной светлой саркоплазме, окружающей относительно крупное ядро, которое расположено в центральной зоне. Гранулы гликогена немногочисленны.

Слабо развитый саркоплазматический ретикулум распределен преимущественно по периферии клетки, причем его терминальные цистерны иногда формируют типичные функциональные контакты с плазмолеммой. В цитоплазме содержатся свободные гранулы рибонуклеопротеидов, элементы гранулярного ретикулума, комплекса Гольджи, лизосомы. Стабильность формы этих довольно бедных органеллами клеток поддерживают многочисленные хаотично расположенные элементы цитоскелета — так называемые промежуточные филаменты диаметром около 10 нм, часто оканчивающиеся в плотном веществе десмосом.

Клетки II типа — переходные или латентные пейсмейкеры — неправильной удлиненной отростчатой формы. Они короче, но толще рабочих кардиомиоцитов предсердий, нередко содержат два ядра. Сарколемма переходных клеток часто образует глубокие инвагинации диаметром 0,12–0,16 мкм, выстланные гликокаликсом, как и в Т-тубулах. Эти клетки богаты органеллами и имеют меньше недифференцированной саркоплазмы, чем П- клетки, их миофибриллы ориентированы вдоль длинной оси, толще и состоят из большего количества саркомеров, в которых слабо выражены Н- и М-полоски. Митохондрии, расположенные между миофибриллами, по своей внутренней организации приближаются к таковым клеток рабочего миокарда, количество гликогена непостоянно.

Клетки III типа подобны клеткам Пуркинье — проводящие миоциты, на поперечных срезах выглядят объемнее других кардиомиоцитов. Их длина составляет 20–40 мкм, диаметр — 20– 50 мкм, образуемые ими волокна имеют большее поперечное сечение, чем в рабочем миокарде, но неодинаковую толщину.

Клетки Пуркинье отличают также обширная свободная от миофибрилл перинуклеарная зона, выполненная светлой вакуолизированной саркоплазмой, крупное округлое либо напоминающее прямоугольник ядро с умеренной концентрацией хроматина. Их контрактильный аппарат развит слабее, а система пластического обеспечения — лучше, чем в вентрикулярных кардиомиоцитах. Сарколемма образует многочисленные кавеолы, единичные, нерегулярно расположенные Т-тубулы и глубокие, достигающие аксиальной зоны клетки-туннели диаметром до 1 мкм, выстланные базальной мембраной.

Миофибриллы, расположенные в субсарколеммной зоне, иногда ветвятся и анастомозируют. Несмотря на нечеткую ориентировку по длиннику клетки, они, как правило, закреплены в обоих вставочных дисках. Упаковка миофиламентов в миофибриллах довольно рыхлая, гексагональное расположение толстых и тонких протофибрилл не всегда выдерживается, в саркомерах слабо выражены Н- полоска и мезофрагма, отмечается полиморфизм в структуре Z-линий.

В саркоплазме видны свободно взвешенные разрозненные и собранные в комплексы толстые и тонкие филаменты цитоскелета, связанные с полисомами, микротрубочки, лептофибриллы с периодом 140–170 нм, рибосомы и гранулыгликогена, нередко заполняющие всю свободную саркоплазму. Немногочисленные элементы саркоплазматического ретикулума располагаются вокруг миофибрилл и под сарколеммой, иногда образуют субсарколеммные цистерны. Митохондрии заметно меньше, чем в рабочих кардиомиоцитах, расположены как вдоль миофибрилл, так и перинуклеарно в виде небольших скоплений. Здесь же отмечаются профили гранулярного ретикулума, пластинчатого комплекса, лизосомы, окаймленные везикулы.

В целом, П-клетки проводящей системы, генерирующие импульсы, отличаются наиболее низким уровнем морфологической дифференцировки, который постепенно повышается по мере приближения к рабочим кардиомиоцитам желудочков, достигая здесь максимального значения. Объединение различных типов клеток в единую систему генерации и проведения импульса определяется необходимостью синхронизации этого процесса во всех отделах сердца.

Миоциты проводящей системы сердца имеют не только цитоморфологические, но иммуно- и гистохимические отличия от клеток рабочего миокарда. Все миоциты проводящей системы, за исключением П-клеток предсердно-синусного узла, богаче гликогеном, который присутствует в них не только в легко метаболизируемой β-форме, но и в виде более устойчивого комплекса с белками — десмогликогена, выполняющего пластические функции. Активность гликолитических ферментов и гликогенсинтетазы в проводящих кардиомиоцитах относительно выше, чем энзимов цикла Кребса и дыхательной цепи, тогда как в рабочих кардиомиоцитах это соотношение имеет обратный характер соответственно содержанию митохондрий. В результате миоциты предсердно-желудочкового узла, пучка Гиса и других отделов проводящей системы устойчивее к гипоксии, чем остальной миокард, несмотря на более высокую активность АТФазы. В ткани проводящей системы отмечается интенсивная реакция на холин эстеразу, отсутствующая в миокарде желудочков, и значительно большая активность лизосо мальных гидролаз.

Распределение миоцитов различных типов, характер и строение контактов клеток в различных отделах проводящей системы определяется их функциональной специализацией. В срединной зоне синусно-предсердного узла расположены наиболее рано активирующиеся П-клетки — пейсмейкеры, генерирующие импульс. Его периферию занимают переходные клетки II типа, П-клетки контактируют только с ними. Переходные клетки опосредуют прохождение импульса к миоцитам предсердий, замедляют его распространение. Контакты П-клеток немногочисленны, имеют упрощенное строение и весьма произвольную локализацию. В большинстве случаев представлены простым сближением плазмолеммы смежных клеток, фиксируемым единичными десмосомами. Цитологический состав предсердно-желудочкового узла более разнообразен. В нем присутствуют клетки, по структуре очень близкие к пейсмейкерным, краниодорсальную часть занимают миоциты II типа, а дистальные отделы состоят из быстрее проводящих импульс Пуркинье-подобных проводящих миоцитов III типа.

Некоторые исследователи выделяют в составе узла три зоны, отличающиеся по морфологическим и электрофизиологическим характеристикам: АN, переходную от предсердного миокарда к узловой ткани, состоящую в основном из переходных клеток, и NН-зону, пограничную с пучком Гиса, преимущественно формируемую полиморфными переходными Пуркинье-подобными клетками.

Контакты переходных миоцитов с типичными нодальными П-клетками имеют более простое строение, чем их соединения между собой, с предсердными рабочими миоцитами или клетками III типа. Межклеточные стыки образуют лишь непротяженные и бедные осмиофильным материалом промежуточные зоны, а десмосомы и миниатюрные нексусы отмечают довольно редко.

Межклеточные контакты миоцитов III типа между собой и с окружающими сократительными кардиомиоцитами организованы сложнее и по своей структуре ближе к характерным для рабочего миокарда. Вследствие более упорядоченного расположения миофибрилл они ориентированы поперек длинной оси клеток и замет- но реже образуются боковыми поверхностями их апикальных зон. Поперечно расположенные вставочные диски отличает большая протяженность хорошо выраженных промежуточных зон. Наличие протяженных нексусов при боковых контактах значительно повышает проводимость этих мышечных волокон и облегчает передачу импульсов на рабочий миокард. Вставочные диски между клетками Пуркинье иногда имеют косое расположение или V-образную форму. Подобная ориентация и слабая извитость промежуточных зон соответствуют более примитивному строению их вставочных дисков по сравнению с рабочими клетками.

В.В. Братусь, А.С. Гавриш «Структура и функции сердечено-сосудистой системы»

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *