Меню Рубрики

Конструирование ифа тестов для детекции вируса бешенства

Методы выявления антигенов. При бешенстве для экспресс-диагностики можно использовать методы флуоресцирующих антител (МФА), реакции преципитации (РП) в агаровом геле, методы иммуноферментного анализа (ИФА), полимеразной цепной реакции (ПЦР). Для прижизненной диагностики бешенства у человека требуется несколько тестов.

Определение антител к антигенам вируса бешенства. Выявление антител в сыворотке крови или в цереброспинальной жидкости — важный метод диагностики. Серологическое исследование рабиес-специфических антител проводится в сыворотке крови для определения пред- и постэкспозиционной вакцинации и определения времени бустерной иммунизации с целью повышения иммунного ответа.

Выделение вируса. Для выделения и идентификации вируса используют метод биопробы на белых мышах. Исследуемый материал суспендируют в физиологическом растворе, содержащем антибиотики и эмбриональную сыворотку крупного рогатого скота. Суспензия вводится интрацеребрально белым мышам массой 5–6 г. Для доказательства развития инфекции за мышами ежедневно наблюдают до 30-го дня после инокуляции. Мыши, у которых за этот период развивается заболевание, немедленно подвергаются эвтаназии, и ткани мозга исследуются методом прямой МФА.

Преимущество данного подхода состоит в возможности определить малые количества вируса бешенства в материале. Недостаток метода — необходимость многодневного (7–18 суток) ожидания между инокуляцией и проявлением первых признаков заболевания. Для сокращения инкубационного периода применяют мышей-сосунков. Для экспресс-диагностики можно использовать мышей в возрасте менее 3 дней: у мышей, забитых через 3 дня, уже выявляется антиген вируса в мозге, который можно выявить методом МФА.

Такой метод выделения вируса практикуется в качестве подтверждающего диагностического теста при отрицательных результатах по выявлению антигена и телец Бабеша – Негри и в случае укуса человека подозрительным на бешенство животным. Он обеспечивает надлежащую чувствительность и специфичность, т. е. расценивается на уровне диагностической значимости метода прямой иммунофлуоресценции. Кроме того, этот метод является основным для идентификации вариантов вируса и перспективен для разработки диагностических реагентов.

Выделение и идентификация вируса на культуре клеток. Основным недостатком выделения вируса при инфицировании лабораторных животных является длительность метода. Избежать этого можно при использовании культур клеток. Обычно для этих целей используют культуру клеток нейробластомы мышей, если нужно исследовать ткани головного мозга. Мозг суспендируют в культуральной питательной среде, суспензию наносят на монослой культуры клеток и инкубируют от одного до нескольких дней.

Чувствительность данной культуры к вирусу можно повысить обработкой ее ДЕАЕ декстраном. Монослой клеток затем отмывают, фиксируют на холоде ацетоном или смесью формалина с метанолом и исследуют методом иммунофлюоресценции. Если животное было инфицировано вирусом бешенства, то в монослое культуры клеток выявляются цитоплазматические включения антигена вируса бешенства.

Показано, что на клетках мышиной нейробластомы линии Na C1 300 в сочетании с МФА антиген вируса бешенства можно выявить через 2 дня. Чувствительность метода сравнима с методом изоляции вируса на мышах.

Хотя вирус бешенства обладает облигатной нейропатогенностью in vivo, он способен инфицировать широкий круг клеток-хозяев in vitro, что можно использовать для исследования других тканей и органов на наличие вируса бешенства. Установлено, что вирус бешенства размножается в клетках ВНК-21 и Vero, в первичных клетках куриных эмбрионов или почек хомяка. Показано, что адсорбция вируса и внедрение его в клетку происходят в течение 7 часов. Через 24–48 часов внутри клетки образуются новые вирусные частицы, через 72 часов происходит почкование их из клеточной оболочки в межклеточное пространство.

Для экспресс-диагностики бешенства могут быть использованы:

а) метод МФА — для выявления антигена вируса бешенства в отпечатках роговицы или заднего отдела шеи больного, содержащего луковицы волос;
б) метод ПЦР — для выявления РНК вируса в биоптатах тканей, слюне, спинномозговой или слезной жидкости;
в) метод ИФА — для выявления специфических антител (антигена) у больных с типичным или атипичным течением.
г) метод биопробы — для выделения вируса на ранних этапах заболевания или для выявления антител в крови или спинномозговой жидкости на поздних стадиях заболевания. Для экспресс-диагностики используется комплексный метод (биопроба + МФА), заключающийся в заражении исследуемым материалом 2-дневных новорожденных мышей и исследования их мозга на 3–4-е сутки в МФА.

Выбор методов прижизненной диагностики в значительной мере зависит от стадии болезни: метод, основанный на выявлении антигенов, как правило, обладает высокой чувствительностью в конце инкубационного периода, в течение первых нескольких дней заболевания, в то время как вируснейтрализующие антитела обычно появляются в спинномозговой жидкости и сыворотке крови после 7-10 дней от начала болезни.

Реакция иммунофлюоресценции. Метод основан на использовании антител, связанных с красителем, например, флюоресцеинизотиоцианатом. РИФ широко применяется для выявления вирусных антигенов в материале больных и для быстрой диагностики.

Метод обладает наиболее высокой степенью чувствительности, он положен в основу экспресс-диагностики и позволяет обнаруживать вирусные антигены в течение нескольких часов

Основные достоинство МФА: быстрота выполнения, высокая специфичность (100%). Затрачиваемое время на диагностику заболевания с его помощью — менее одного дня. Применяются прямой и непрямой варианты МФА.

Прямая иммунофлуоресценция остается наиболее предпочитаемым методом диагностики бешенства. Предметные стекла, содержащие мазки-отпечатки тканей мозга, или стекла с монослоем культуры тканей фиксируют в ацетоне в течение 1–4 часов. Затем препараты высушивают и обрабатывают флуоресцирующими поликлональными антинуклеокапсидными антителами (иммунофлуоресцентный реагент).

Этот реагент представляет собой конъюгат, приготовленный из специфических поликлональных антител IgG класса к нуклеокапсидному антигену вируса и флуоресцеина изоцианата (ФИТЦ). Специфические антитела получают путем гипериммунизации животных (кроликов, хомяков или лошадей) смесью эпитопов нуклеокапсида вируса.

В настоящее время для этих целей все шире используют мышиные моноклональные антитела к нуклеокапсиду вируса бешенства. После 30-минутной инкубации при 37° С диагностические препараты многократно отмывают физиологическим раствором и дистиллированной водой.

Антитела, меченные ФИТЦ, фиксируются только в местах локализации вирусных нуклеопротеидных антигенов. Затем препараты высушивают на воздухе и исследуют методом световой микроскопии, используя в качестве источника света ксеноновую лампу и соответствующий фильтр.

При непрямом варианте антиген сначала соединяют с неокрашенной специфической иммунной сывороткой. Затем на образовавшиеся нефлуоресцирующие комплексы антиген-антитело воздействуют меченой флуорохромом иммунной сывороткой, содержащей антитела к белкам специфической сыворотки. Непрямой вариант МФА наряду с выявлением антигена позволяет количественно определять антитела в исследуемой сыворотке путем соответствующего ее разведения.

Меченые ФИТЦ образования в клетках разных тканей выявляются в виде желто-зеленого флуоресцентного окрашивания на темном фоне (в виде округлой или овальной формы внутрицитоплазматических включений).

Иммуноферментный анализ. Метод основан на принципе сорбции белков на твердой фазе с последующим образованием комплексов антиген-антитело, выявляемых субстрат-индикаторным раствором. Добавляемый в лунки антиген специфически связывается с антителами. На слой антигена наносят исследуемые сыворотки в нужных разведениях. При наличии в них специфических антител последние связываются с антигеном. Для выявления связывания на слой антител наносят иммуноглобулин против глобулинов сыворотки людей, коньюгированный с пероксидазой хрена. Количество сорбирующего коньюгата пропорционально количеству связавшихся с антигеном антител сывороток людей. Это можно определить, используя индикаторный раствор (ортофенилилендиамин + перекись водорода), компоненты которого в результате действия пероксидазы коньюгата окрашивают жидкость в коричнево-желтый цвет. При обследовании неясных случаев применение ИФА дополнительно к методам РП или РСК позволяет увеличить достоверность лабораторной диагностики бешенства, благодаря большой чувствительности этого метода. Метод позволяет обнаруживать инфекционные и дефектные частицы.

Для определения антирабических антител в процессе вакцинации можно применять непрямой метод ИФА, используя в качестве антигена очищенный вирус, а для определения антител класса IgG в человеческой сыворотке — А-белок стафилококка, связанный с пероксидазой хрена. Результаты ИФА сравнимы с полученными в тестах вирусной нейтрализации на мышах. Метод позволяет выявлять присутствие IgМ в начале процесса иммунизации.

Иммуноферментные методы — весьма перспективны для выявления нуклеокапсидного антигена вируса при посмертной диагностике в тканях головного мозга. В их числе, например, быстрый иммуноферментный метод диагностики бешенства, основанный на приготовлении плашек сенсибилизированных антителами IgG изотипа к нуклеокапсиду первого серотипа, разведенных в карбонатном буфере.

Материал для исследования гомогенезируют в буфере или культуральной среде, осветляют центрифугированием, вносят в лунки и инкубируют в плашках. Фиксированный специфическими антителами нуклеокапсидный антиген идентифицируют добавлением пероксидазного конъюгата с антинуклеокапсидными противорабическими антителами иной видоспецифичности и хромогенного субстрата. Чувствительность метода составляет 0,8–1,0 нг/мл.

Этим методом можно выявлять антигены вирусов различных серотипов. Применение конъюгатов нуклеокапсидспецифичных антител, меченых биотином, повышает чувствительность метода до 0,1–0,2 нг/мл.

Методом ИФА успешно выявляется антиген нуклеокапсида [139], но материал, даже разложившийся, не должен фиксироваться формалином.

Метод полимеразной цепной реакции. Для экспресс-диагностики вируса бешенства и идентификации лиссавирусов наиболее удобен метод полимеразной цепной реакции (ПЦР). Метод ПЦР — самый надежный и быстрый для выделения вирионной РНК из любых проб, содержащих вирус в низкой концентрации. С его помощью можно создать много копий РНК вируса. Этот метод используется для подтверждения результатов МФА и для определения вируса в слюне, луковицах волос заднего отдела шеи и головы.

ПЦР основана на принципе естественной репликации ДНК. Суть метода заключается в многократном повторении циклов синтеза (амплификации) вирусоспецифической последовательности ДНК с помощью термостабильной Taq ДНК-полимеразы и двух специфических затравок, так называемых праймеров.

Каждый цикл состоит из трех стадий с различным температурным режимом. В каждом цикле удваивается число копий синтезируемого участка. Вновь синтезированные фрагменты ДНК служат в качестве матрицы для синтеза новых нитей в следующем цикле амплификации, что позволяет за 25–35 циклов наработать достаточное число копий выбранного участка ДНК для ее определения, как правило, с помощью электрофореза в агарозном геле.

Особенно высокая чувствительность ПЦР при использовании праймеров, комплементарных N-гену, когда удается выявлять РНК вируса в пробах, содержащих вирус в титре 10 МЛД50. Методом ПЦР можно выявлять РНК вируса даже в разложившемся патологическом материале.

В настоящее время разработаны и широко используются на практике подтверждающие (конфирматорные) тесты, такие как ПЦР в обратно-транскриптазном исполнении (ОТ-ПЦР). Метод ОТ-ПЦР — высокочувствительный и наиболее эффективный. РНК экстрагируется из тканей инфицированного вирусом органа, транскрибируется в кДНК, которая затем амплифицируется методом ПЦР. Для постановки ОТ-ПЦР необходимы праймеры, полученные к консервативным областям генома вируса бешенства. Обычно используются гены, кодирующие нуклеопротеин или N-белок.

Метод ПЦР высокоспецифичен и очень чувствителен. Является одним из наиболее точных тестов детекции рабического антигена, позволяет диагностировать бешенство даже при наличии в материале хотя бы одного вириона. В основе теста лежит комплементарное достраивание РНК-матрицы, осуществляемое in vitro с помощью фермента РНК-полимеразы. В последние годы ПЦР находит все более широкое применение для диагностики и мониторинга вирусных инфекций. Однако методика проведения сложна, дорогостояща и пока недостаточно унифицирована для рутинного применения.

Цитологические методы в настоящее время имеют ограниченное диагностическое значение, но при ряде инфекций по-прежнему должны применяться. Исследуются материалы аутопсии, биопсии, мазки, которые после соответствующей обработки окрашиваются и анализируются под микроскопом. При бешенстве — это выявление включений в цитоплазме клеток (тельца Бабеша – Негри).

Выделение вируса. Выделение вируса может быть необходимым для подтверждения результатов тестов по определению антигена и для более детальной характеристики изолятов. И хотя этот метод является одним из самых старых и трудоемких методов диагностики, сегодня выделение вируса с последующей идентификацией с помощью одного из современных методов (ИФА с моноклональными антителами или ПЦР) является наиболее достоверным методом диагностики, т. н. «золотой стандарт».

Результативность методов диагностики бешенства может варьировать в зависимости от ряда факторов (стадии болезни, сроков забора материала, качества полученных проб, условий их хранения, опытности персонала, качества реактивов и др.). Если положительный результат подтверждает бешенство, то отрицательный не всегда свидетельствует об отсутствии болезни. Поэтому при бешенстве эксперты ВОЗ рекомендуют использовать несколько тестов, особенно МФА в сочетании с биопробой на новорожденных (2–3 дневных) белых мышах.

Все работы с материалом, предположительно содержащим вирус бешенства, равно как и с животными, подозрительными на бешенство, должны проводиться с соблюдением мер личной безопасности. Медицинские работники и ветеринарные врачи должны работать в халатах, перчатках, масках.

По окончанию работы боксы обрабатывают 3% раствором перекиси водорода.

Флаконы, ампулы и инструменты, а также оставшиеся материалы, содержащие вирус бешенства, и всю посуду после работы обеззараживают автоклавированием в течение 1 часов при 1,5 атм (режим «убивки»).

Средства индивидуальной защиты обеззараживают кипячением или автоклавированием. Рабочую поверхность стола и руки обеззараживают дезраствором (0,5% раствор хлорамина).

источник

Бруцеллез – бактериальная инфекционно-аллергическая болезнь, относящаяся к группе зоонозов и занимающая особое положение среди других инфекционных болезней из-за своеобразия возбудителя. Этиопатогенетические особенности бруцеллеза определяют большую склонность заболевания к хроническому течению с длительной персистенцией патогена. Фактор времени не играет абсолютной роли в определении формы или стадии болезни, так острый процесс может развиваться на фоне латентного бруцеллеза, а хроническое течение может развиваться с самого начала болезни. Как правило, после консультации инфекциониста для исключения возможного бруцеллеза кровь пациента тестируют только в реакциях Хеддельсона и Райта, обладающих, по информации ряда авторов, невысокой чувствительностью (35–64 %). Из современных серологических методов диагностики бруцеллеза иммуноферментный анализ (ИФА) является наиболее доступным и распространенным [2, 3, 4]. Явные преимущества этого теста – простота и быстрота выполнения, высокая чувствительность, стабильность реагентов, возможность количественного учета реакции, обработка большого количества проб, автоматизация процесса и объективность инструментального учета результатов [5]. Метод иммуноферментного анализа находится в постоянном развитии. С одной стороны, расширяется число объектов исследования, с другой – углубляются и совершенствуются методы самого анализа [7]. Специфичность и чувствительность ИФА зависит от качества используемых иммунореагентов и оптимизации постановки теста.

Читайте также:  Кто является возбудителем бешенства

Целью настоящей работы стало изучение возможности выявления антител в сыворотках крови людей при хроническом течении бруцеллеза в иммуноферментном анализе.

Проведя анализ полученных результатов, нами была сконструирована экспериментальная тест-система диагностическая для выявления специфических антител в сыворотках крови больных острым и хроническим бруцеллезом в непрямом методе постановки иммуноферментного анализа (нИФА).

В качестве сенсибилизирующего агента был апробирован поливалентный бруцеллезный водорастворимый антиген (Аг-в/р), извлеченный по методу Е. Н. Афанасьева из смеси бакмасс Brucella (B.)abortus19ABB. melitensisRev-1, B. suis61, обеззараженных охлажденным до минус 20 оС ацетоном [1].

Для получения кроличьей сыворотки против Ig G человека проводили гипериммунизацию по схеме, разработанной И. С. Тюменцевой с соавторами [6]. Схема основана на подборе оптимальной комбинации интактных и полимеризованных Ig G, выделенных из нормальной сыворотки крови человека, а также иммуномодуляторов тималина и циклофосфана. В качестве доноров антивидовых IgG были взяты кролики породы «Шиншилла», массой 3–3,5 кг. Гипериммунизацию проводили с соблюдением видоидентичности антигенов и вида продуцентов, используя IgG, выделенные из нормальной сыворотки крови человека, и иммуномодуляторы тималин и циклофосфан.

Конъюгацию кроличьих Ат против Ig G человека с индикаторным ферментом – пероксидазой хрена (ПХ) (тип VI-А, Rz:

3.0 с активностью 1550 units/mg (Sigma)) проводили по методу перйодатного окисления по P. K. Nakane, A. Kawaoi (1974) в модификации M. B. Wilson, P. K. Nakane (1978).

Результаты ИФА регистрировали с помощью фотометра «Multiskan FC», измеряя оптическую плотность (ОП), используя фильтр с длиной волны 450 нм. По результатам ОП рассчитывали значение критической оптической плотности (ОПкрит.) по формуле 1:

где ОПсрК- – среднее значение ОП для отрицательного контрольного образца.

Для интерпретации результатов исследования применяли коэффициент позитивности (КП):

При КП tкрит., изменения признака статистически значимы (р

источник

Разработка и оптимизация условий постановки тест-системы для диагностики бешенства сэндвич методом твердофазного иммуноферментного анализа

РГП «Научно-исследовательский институт проблем биологической безопасности» КН МОН РК, пгт. Гвардейский, Кордайский район, Жамбылская область, Республика Казахстан

Разработана тест-система и оптимизированы условия её постановки для выявления антигенов вируса бешенства на основе сэндвич метода твердофазного иммуноферментного анализа. Приведены результаты, свидетельствующие о достаточно высокой специфичности и чувствительности тест-системы, что позволяет предложить его для рутинной диагностики бешенства в качестве альтернативы импортным диагностикумам.

Ключевые слова: бешенство, вирус, антиген, иммуноглобулин, ТФ-ИФА, тест-система, сыворотка, конъюгат.

Восприимчивость к заболеванию всех видов домашних и диких животных, огромная опасность для человека определяют социальное и экономическое значение бешенства, и привлекает к нему пристальное внимание ветеринарной, медицинской науки и практики [1].

В большинстве регионов Казахстана эпизоотическая ситуация по бешенству чрезвычайно сложна — резко активизировались природные очаги этой инфекции, увеличилось число случаев заболеваний среди различных видов животных, ежегодно регистрируются случаи заболеваний людей с летальным исходом [2, 3]. Несмотря на проводимые мероприятия, в Республике Казахстан ограничить распространение рабической болезни и полностью ликвидировать бешенство животных до сих пор не удается.

Значимое место в борьбе с бешенством принадлежит экспресс диагностике, которая служит основанием необходимости проведения лечебно-профилактических и противоэпизоотических мероприятий. Для диагностики и выявления возбудителя бешенства разработаны и предлагаются различные методы: морфологическое исследование, реакция диффузионной преципитации в агаровом геле (РДП), метод иммунофлуоресценции, биологическая проба на лабораторных животных [4]. Среди тестов для ускоренной лабораторной диагностики бешенства животных интенсивно развивается метод иммуноферментного анализа. Явными преимуществами этого теста являются простота и быстрота выполнения, высокая чувствительность, стабильность реагентов, возможность количественного учета реакции, обработки большого количества проб, автоматизации процесса и объективность инструментального учета результатов [5]. Специфичность и чувствительность иммуноферментного теста для диагностики бешенства зависит от качества используемых иммунореагентов, оптимизации постановки теста и подтверждается способностью выявлять локальные предоминантные варианты вируса [6].

До настоящего времени использование данного теста в Республике Казахстан ограничено в связи с отсутствием коммерческих отечественных тест-систем для диагностики бешенства методом иммуноферментного анализа и высокой стоимостью импортных диагностикумов. Разработка и внедрение данного теста позволит проводить активный надзорза бешенством, результаты которого позволят адекватно оценить масштабы распространения данного заболевания на территории Республики Казахстан и своевременно принять научно-обоснованные противоэпизоотические и противоэпидемиологические мероприятия.

Целью настоящей работы являетсяразработка и оптимизация условий постановки тест-системы для диагностики бешенства сэндвич методом ТФ-ИФА.

В качестве доноров антирабических антител были использованы козы и ослы. Для гипериммунизации использовали антиген, приготовленный из мозга животных, лабораторно зараженных вирусом бешенства штамм «Овечий» с использованием метода описанного Slonim О. etal [7]. Гипериммунизацию осуществляли с использованием схемы, описанной Luekrajang T. Etal [8] с соблюдением видоидентичности антигенов и вида продуцентов. Для выделения иммуноглобулинов использовали антирабические сыворотки с активностью в РДП не ниже 1:64. Иммуноглобулины выделяли спиртовым фракционированием по методу Кона [9], вирусоспецифические конъюгаты получали по модифицированному методу Wilson и Nakane[10], с использованием пероксидазы хрена фирмы «Sigma» (USA) тип VI-А.

Специфичность и активность антирабических сывороток и иммуноглобулинов оценивали в РДП с использованием антигенов из тест-системы для лабораторной диагностики бешенства в реакции диффузионной преципитации СТ ДГП 4-2009(НИИПББ, РК) и набора компонентов для диагностики бешенства животных в реакции диффузионной преципитации (ВНИТИБП, РФ). Постановку реакции осуществляли по общепринятой методике.

Оптимальную сенсибилизирующую дозу иммуноглобулинов определяли в серии опытов «шахматного титрования» препаратов специфического и нормального антигенов против препаратов пероксидазных коньюгатов на планшетах, сенсибилизированных иммуноглобулином в разведениях с 1:100 до 1:600. Определяли средние величины (коэффициент позитивности) P/N, где Р и N — показатели оптической плотности положительной и отрицательной контрольной сывороток. Чем выше данный показатель, тем эффективнее идет процесс адсорбции. Оптимальные временные и температурные взаимодействия компонентов реакции: сенсибилизации лунок планшета специфическим иммуноглобулином, контакт антигена с иммуносорбентом и контакт антигена с коньюгатом проводили при 37°С, 30÷180 мин. Подбирали оптимальное рабочее разведение коньюгатов иммуноглобулинов (1:200÷1:1000), дающее максимальную цветовую реакцию при внесении их в планшеты с иммобилизированным на иммуносорбенте антигеном. Для выбора оптимальной твердой фазы испытывали полистироловые планшеты фирм «Costar» (USA), «Медполимер»(РФ), «Aptaca» (Италия), «Kohinoor» (Чехия), Nunc (Дания).

Учет результатов теста ТФ-ИФА проводили на фотометре марки «MultiskanPlus» при длине волны 405 нм (для АБТС) по отношению оптической плотности испытуемой сыворотки к оптической плотности нормальной сыворотки. Результат считали положительным, если оптическая плотность испытуемой сыворотки в 2 и более раза превышала оптическую плотность нормальной сыворотки и была не ниже 0,15.

Для проверки специфичности тест-системы ТФ-ИФА использовали культуральные и тканевые антигены вакцинных штаммов «Овечий», «МПТ-НИСХИ», «VRC-RZ2», «РВ-97», «ТС-80», локальных полевых изолятов«РАШТ», «РТ 001-07», «SVR-S1-2008», «SVR-B1-2007», «SVR-F1-2011», нормальные тканевые антигены (мыши, кролика, собаки, кошки, овцы, козы, КРС), нормальные культуральные антигены (ВНК-21, ПС, Vero), гетерогенные антигены (вируса болезни Ауески, чумы плотоядных, чумы мелких жвачных животных, катаральной лихорадке овец, листериоза).

Историческая диагностика, основанная на обнаружении телец Бабеша-Негри в инфицированном мозгу, уступила свое место более чувствительным методам иммунофлуоресценции и иммуноферментного анализа. Несмотря на то, что до настоящего времени МФА является «золотым стандартом» в диагностике бешенства [6], данный метод имеет ряд недостатков, связанных с необходимостью использования для учета результатов люминесцентного микроскопа, подавления неспецифического свечения в патологически измененных тканях, возможностью исследования только проб свежего мозга, а также отсутствием количественной оценки теста [11].

Не уступая чувствительности и специфичности МФА, методы иммуноферментного анализа лишены выше перечисленных недостатков и к настоящему времени находят все большее применение в рутиной диагностики бешенства во многих странах мира [12]. Из всего многообразия известных на сегодняшний день различных вариантов ИФА, отличающихся по характеру используемых реагентов и последовательности отдельных этапов, для решения поставленной задачи нами был выбран двухцентровый метод ТФ ИФА. Высокая корреляция результатов сэндвич варианта ТФ-ИФА с результатами классической биопробы и МФА, а также возможность выявлять антиген вируса в пробах любой степени разложения и вне зависимости от использованных консервантов и фиксаторов делает этот тест идеальным, как в качестве самостоятельного метода диагностики, так и в сочетании с вышеописанными методами.

По данным разных авторов, порог данного теста варьирует в пределах 2-3lg МЛД50/мл [13]. Чувствительность метода может быть повышена использованием тестов на основе моноклинальных антител (МА), но для целей идентификации возбудителя болезни имеется необходимость использовать панели антинуклеокансидных и антигликопротеиновых МА на различные антигенные варианты вируса. Поэтому для диагностики бешенства наибольшее распространение получили наборы препаратов на основе поликлональных антител, поскольку данные антитела позволяют выявлять не только уникальные эпитопы, но и общие антигенные детерминанты антигенов вируса бешенства, тем самым повышая результативность реакции.

Важными критериями чувствительности, специфичности и воспроизводимости теста является активность, специфичность конъюгатов антител. А качество конъюгатов, в свою очередь, зависит от активности, специфичности и чистоты применяемых для конъюгации иммуноглобулинов или антител.

С этой целью нами была разработана схема получения гипериммунной антирабической сыворотки крови коз и ослов, которая позволила получить иммуноглобулины с титром преципитирующих анти:64÷1:128. В результате электрофореза в ПААГ препаратов иммуноглобулинов выявлены профили, соответствующие легким и тяжелым цепям иммуноглобулинов G класса и слабовыраженные профили белков других классов, что свидетельствует о достаточной чистоте полученных препаратов. На основе выделенных иммуноглобулинов был приготовлен иммунопероксидазный конъюгат.

Поскольку чувствительность ИФА зависит от целого ряда физико-химических факторов (температура, ионная сила и рН реакционной среды, концентрационные соотношения компонентов и продолжительность их взаимодействия), при конструировании тест-систем на основе полученных препаратов использовали эмпирический подбор оптимальных параметров постановки теста.

Конструирование иммуноферментного диагностикума включало поиск оптимальных параметров тест-системы, от которых зависят чувствительность и специфичность проводимой реакции. Важным фактором в разработке тест-системы являлось определение условий адсорбции на твердой фазе, т. е. установление оптимальной концентрации иммуноглобулиновой фракции антирабических антител, состава сенсибилизирующего буфера, условий отмывания не связавшихся компонентов, времени и температуры связывания иммуноглобулинов с поверхностью лунок полистироловых планшетов, рабочей дозы приготовленного специфического конъюгата антител с пероксидазой.

Для подбора оптимальных условий сорбции оценивали интенсивность иммуноферментной реакции при различных концентрациях иммуноглобулинов в растворе. Недостаток антител приводит к снижению чувствительности теста, а избыток к перерасходу дорогостоящего реагента. На достоверность результатов ИФА оказывает влияние неспецифическое связывание реагентов со свободными сайтами полистироловых планшет. В наших экспериментах мы испытывали различные количества антител в интервале 1÷20 мкг/мл (разведение иммуноглобулина 1:50 ÷ 1:600). Процесс адсорбции антител оценивали по интенсивности реакции с контрольными специфическими и негативными сыворотками. Наиболее оптимальный уровень насыщения поверхности планшет достигался при концентрации белка, равной 5 мкг/мл (1:200), при этом антитела с нормальными сыворотками реагировала отрицательно, а показатель позитивности составлял 4,5. При других испытанных концентрациях антител коэффициент позитивности варьировал от 3,0-4,2.

С целью снижения неспецифической реакции были проведены исследования по уменьшению фоновых «помех» при использовании различных концентраций бычьего сывороточного альбумина (БСА) в буферном растворе для антигенов, конъюгата, и в качестве промывочного раствора. Были испытаны концентрации БСА 0,1, 0,5, 1, 2%. Исследования, проведенные в этом направлении, позволили установить, что блокирование свободных центров связывания на планшете целесообразно проводить 1% раствором БСА на фосфатно-солевом буфере рН 7,4 с добавлением 0,05% Твин-20, поскольку использование БСА в буфере уменьшало фоновые «помехи», на что указывали максимальные значения показателя позитивности, которые соответствовали для концентрации 0,1% — 3,8; 0,5% — 4,0; 1% — 4,6; 2% — 4,2, тогда как без использования БСА этот показатель равнялся 3,0. На основании этих данных в последующих исследованиях блокирование осуществляли 1%-ным раствором БСА в буферном растворе.

Существенным параметром, влияющим на чувствительность ИФА, является рН комплексирующего буфера. Полистироловые планшеты сенсибилизировали антителами к антигенам вируса бешенства в буферных растворах с рН от 4,0 до 10,0: ацетатном, фосфатном и карбонат-бикарбонатном. На основании анализа результатов проведенных исследований было установлено, что при рН 9,6 0,1М карбонат-бикарбонатного буфера обеспечивался самый высокий уровень адсорбции поликлональных антител к антигенам вируса бешенства на поверхности полистироловых планшет.

Следующим этапом наших исследований стало изучение влияния температуры и времени экспозиции на адсорбцию антител к антигенам вируса бешенства в лунках планшета. Анализ результатов проведенных исследований позволил установить, что оптимальным для сенсибилизации лунок планшета иммуноглобулинами является режим при температуре 4°С в течение 24 ч. или в течение 18 ч. при температуре 20°С (коэффициент позитивности равен 4,5-5,0), в то время как при 37°С и выдержке в 1 ч. адсорбционная способность иммуноглобулинов несколько ниже (коэффициент позитивности около 4,4).

Для определения оптимального уровня активности полученных конъюгатов при проведении ИФА подбирали оптимальное рабочее разведение, дающее максимальную цветовую реакцию при внесении их в полистироловые планшеты. Было установлено, что при рабочем разведении 1:600 коэффициент позитивности составил 6,0 против 4,8-5,2 при разведениях 1:1000-1:800. При изменении концентрации в диапазоне 1:400-1:200 существенной разницы в значениях коэффициента позитивности отмечено не было. Данный факт свидетельствует о насыщении сорбционной емкости планшета конъюгатом, начиная с разведения 1:600.

Читайте также:  Почему нельзя алкоголь когда делаешь прививки от бешенства

Для определения оптимальной продолжительности инкубации антигена в твердофазном методе ИФА оценивали интенсивность реакции по коэффициенту позитивности в зависимости от времени инкубирования (15, 30, 60, 90 минут) при температуре 37°С.

Результаты проведенных нами исследований позволили установить, что 60-минутная экспозиция при температуре 37°С является оптимальным временем инкубации рабического антигена с адсорбированными иммуноглобулинами при постановке ИФА, поскольку установлено, что коэффициент позитивности в диапазоне от 15 до 60 мин возрастал с 5,4 до 6,4, а далее стабилизировался.

Оптимальнымиусловиями инкубирования пероксидазного конъюгата с антигеном на иммуносорбенте, являлись 40-60 мин, при 37°С. Увеличение коэффициента позитивности в данном случае происходило по мере увеличения срока инкубации. Однако разница в величине данного показателя при 40; 60; 90 и 120 мин. экспозицией оказалась незначительной.

При оптимизации условий постановки ТФ-ИФА также осуществлены испытания сорбционных свойств твердой фазы, в качестве которых использовались 96-луночные планшеты для ИФА. С этой целью проводили титрацию положительного антигена в планшетах различных производителей. В результате установлено, что максимальной способностью сорбировать рабический антиген и однородностью сорбции (вариации 4-5%) обладают планшеты фирмы Nunc (Maxisorb) и планшеты фирмы Costar. Другие испытанные планшеты обладали меньшей сорбционной способностью и однородностью сорбции (вариации 4-15%). В связи с этим для дальнейших экспериментов выбраны планшеты Nunc, Costar, позволяющие достигать более высокую чувствительность и стандартность анализа.

Изучение влияния растворов для разбавления специфических компонентов показало, что применение для разбавления антигенов ФБС (0,01М), NaCl (0,15М) или физиологического раствора показывает сравнительно равные результаты по чувствительности и специфичности метода ИФА.

С использованием полученных оптимальных параметров постановки теста были проведены испытания специфичности и чувствительности ТФ-ИФА. Результаты специфичности ТФ-ИФАпредставлены в таблице.

Результаты специфичности тест-системы ТФ-ИФА

для выявления антигенов вируса бешенства

источник

Диагностикум и тест-система для определения активности антирабических сывороток и препарата гетерологичного антирабического иммуноглобулина in vitro методом дот-иммуноанализа

Владельцы патента RU 2360252:

Изобретение относится к области биотехнологии. Предложена тест-система для определения специфической активности антирабических сывороток и иммуноглобулина. Тест-система содержит нитроцеллюлозную мембрану с нанесенными на ее поверхность положительным (отраслевой стандартный образец специфической активности антирабического иммуноглобулина) и отрицательным (нормальная лошадиная сыворотка) контролями, деионизованную воду для отмывок, разведения образца, конъюгат и систему проявления. В качестве конъюгата используют гидрозоль золота с размером частиц 15-17 нм, сорбционно связанный с инактивированным фиксированным вирусом бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии или гликопротеидом вируса бешенства. Техническим результатом изобретения является расширение возможности определения специфической активности антирабических сывороток и иммуноглобулина при производстве гетерологичного антирабического иммуноглобулина. 2 н. и 4 з.п. ф-лы, 2 табл.

Изобретение относится к области биотехнологии, в частности к набору для определения активности антирабических сывороток и иммуноглобулинов методом дот-иммуноанализа, и может быть использовано при производстве гетерологичного антирабического иммуноглобулина.

Антирабический иммуноглобулин в сочетании с антирабической вакциной применяют для экстренной профилактики заболевания людей гидрофобией при тяжелых укусах бешеными или подозрительными на бешенство животными. Бешенство, в связи с абсолютной летальностью и необходимостью проведения курса лечебно-профилактических прививок по жизненным показаниям, остается серьезной проблемой для органов и учреждений здравоохранения. Ежегодно в различные лечебные учреждения Российской Федерации за антирабической помощью обращаются около полумиллиона человек, примерно половина из них получают направление на специфическое антирабическое лечение (Онищенко Г.Г., Верещагин А.И., 2007).

В настоящее время при производстве гетерологичного антирабического иммуноглобулина уровень активности антирабических сывороток и готового препарата определяют in vivo в реакции нейтрализации (РН) вируса бешенства на белых мышах по Р. Atanasiu («Методы лабораторных исследований по бешенству», ВОЗ, 1975). Данный метод основан на нейтрализации постоянной дозы предварительно протитрованного инфицирующего вируса бешенства рядом последовательных разведений исследуемой сыворотки или иммуноглобулина. Метод складывается из следующих этапов: приготовление и титрование инфицирующего вируса; нейтрализация вируса сывороткой или иммуноглобулином (разведение сыворотки или иммуноглобулина и приготовление смеси сыворотка или иммуноглобулин — вирус; инокуляция мышам); интерпретация результатов. Для определения LD50 вируса мышам вводят интрацеребрально по 0,03 мл суспензии вируса; каждое разведение вводят группе из 5 животных. Регистрируют число мышей, погибших в период между 6-м и 20-м днем после заражения. Расчет LD50 вируса проводят по методу Reed и Muench («Методы лабораторных исследований по бешенству», ВОЗ, 1975). Для нейтрализации используют суспензию мозга, содержащую от 100 до 1000 LD50/0,03 мл. Для этапа нейтрализации готовят ряд разведений испытываемой сыворотки или иммуноглобулина и по 0,5 мл каждого из этих разведений переносят в ряд пробирок. Затем в каждую пробирку добавляют 0,5 мл установленного разведения вируса. После инкубации в течение 1 ч при 37°С заражают интрацеребрально мышей, вводя им по 0,03 мл каждого разведения (по 5 мышей на каждое разведение). Регистрируют число мышей, погибших в период между 6-м и 20-м днем после заражения. Анализ результатов и расчет титра иммуноглобулина или сыворотки проводят по методу Reed и Muench.

Однако метод РН обладает рядом недостатков: трудоемок, требует большого количества животных, длительного времени наблюдения (20 дней) и предполагает использование инфекционного агента. В связи с этим актуальной представляется разработка альтернативных методов определения специфической активности антирабических гипериммунных сывороток и иммуноглобулина. Комитет экспертов ВОЗ по бешенству в своих документах неоднократно подчеркивал необходимость разработки методов титрования антител in vitro (СТД ВОЗ: 523, 709, 824, 931). Это важно и на этапе иммунизации животных при производстве препарата антирабического иммуноглобулина, когда необходимо в короткие сроки принять решение о дальнейшей эксплуатации лошадей-продуцентов.

Известен метод реакции непрямой гемагглютинации с применением сухого эритроцитарного диагностикума для титрования сывороток доноров при получении антирабического иммуноглобулина из крови человека (Шафеева Р.С., Шамсувалеева А.К., 1995). Сухой эритроцитарный диагностикум получали путем сенсибилизации формалинизированных гусиных эритроцитов концентрированным очищенным культуральным вирусом Внуково-32 в присутствии 0,1% раствора хлорного хрома. К недостаткам этого метода можно отнести использование для конструирования диагностикума нестабильных биологических компонентов и трудоемкость.

Известно о применении теста ингибиции фокусов флюоресценции для определения вируснейтрализующих антител в сыворотках крови крупного рогатого скота, лошадей и собак, иммунизированных инактивированной культуральной антирабической вакциной (Недосеков В.В., Вишняков И.Ф., Жестерев В.И. и др., 1998). Предлагаемый метод дает 100% корреляцию с РН. Недостатками метода являются его трудоемкость, дороговизна, потребность в квалифицированных специалистах и специальном оборудовании для работы с перевиваемой культурой клеток почек сайги, использование токсичных реагентов для фиксации клеток, необходимость получения ФИТЦ-конъюгатов.

Известно о применении иммуноферментного метода (ИФА) для обнаружения антител к вирусу бешенства в крови лисиц с использованием антивидовых реагентов (Кузьмин И.В., Хисматуллина Н.А., Колесникова Е.М., 2001). Для конструирования диагностикума применяли пероксидазный конъюгат кроличьего иммуноглобулина. По данным авторов, не выявлено корреляции ИФА и реакции нейтрализации в 100% случаев, и в целом данный метод рекомендован как качественный для скрининговой оценки иммунного статуса популяций лисиц в природных очагах бешенства при проведении эпизоотологических и эпидемиологических обследований и на территориях проведения оральной вакцинации животных.

Известно о применении реакции диффузионной преципитации (РДП), реакции связывания комплемента (РСК), ИФА для определения уровня специфических антител в сыворотках крупного рогатого скота, кроликов и лис (Сазанова Э.Я., Кузнецова С.В., Маслов Е.В. и др., 1991). Недостатками РСК и РДП является их недостаточная чувствительность по сравнению с ИФА.

Известно о применении ИФА для определения антител к гликопротеиду вируса бешенства в сыворотках вакцинированных людей с применением диагностикума Platelia (r) rabies kit — Sanofi Pasteur Diagnostics, Франция (Сельникова О.П., Моисеева А.В., Антонова Л.А., Маричев И.Л., 2005).

Недостатками метода ИФА являются многостадийность, необходимость получения антивидовых реагентов для изготовления конъюгата, использование токсичных субстратов. Высокую точность измерений обеспечивают только специальные анализаторы. Кроме того, свойства микротитровальных планшетов, используемых для анализа, изменяются от партии к партии, от планшета к планшету и даже от лунки к лунке (так называемый краевой эффект).

В модифицированном варианте для адсорбции различных антител вместо внутренних поверхностей лунок микротитровальных планшетов используют нитроцеллюлозные фильтры. Такую модификацию называют дот-ИФА (точечный твердофазный иммуноферментный анализ). В дот-ИФА минимальные объемы растворов антител наносят на нитроцеллюлозную или подобную подложку в виде серии точек, что позволяет выполнить гораздо большее число анализов с тем же количеством реагентов. Преципитирующие хромогенные субстраты, обычно применяемые в иммуноблоттинге, на белом нитроцеллюлозном фильтре образуют легко различимые цветные пятна, в результате чего отпадает необходимость в дорогих фотометрах. Белый цвет подложки вокруг пятен помогает контролировать реакции неспецифического связывания. Фильтры с результатами анализа можно хранить в темноте в течение многих лет без потери окраски. Кроме того, преимуществами анализов типа дот-ИФА являются простота и экономичность в отношении расхода реагентов. Однако при применении метода дот-ИФА также необходимы ферментные конъюгаты и субстрат для проявления.

Настоящее изобретение предлагает выявление уровня содержания специфических антител в сыворотках продуцентов и в готовом препарате антирабического иммуноглобулина методом дот-иммуноанализа без использования ферментных конъюгатов.

Применение данного метода на этапе иммунизации животных позволит в более короткие сроки, по сравнению с реакцией нейтрализации in vivo, определять величину титров специфических антител в гипериммунных сыворотках, что необходимо для принятия решения о дальнейшей эксплуатации лошадей после циклов иммунизации. До настоящего времени метод дот-иммуноанализа не находил широкого применения в производстве антирабического иммуноглобулина в связи с отсутствием соответствующих коммерческих диагностикумов для исследования сывороток животных.

Известен диагностикум, состоящий из золя серебра и белковополисахаридного антигена бруцелл, полученный по способу, описанному в патенте №2202798, при котором золь серебра добавляют к белковополисахаридному антигену бруцелл, с последующей стабилизацией фосфатным буфером, содержащим сывороточный альбумин, телячью фетальную сыворотку и азид натрия. Диагностикум предназначен для выявления бруцеллезных антител методом дот-иммуноанализа в сыворотках крови.

Наиболее близким техническим решением является набор для многопрофильного анализа сыворотки крови методом дот-иммуноанализа. Набор включает в себя плотные подложки в виде отдельных стрипов, на которые дискретно нанесены антигены и человеческие иммуноглобулины. Набор содержит растворы для отмывок, разведения образцов и конъюгата, систему проявления и конъюгат, представляющий собой золь золота или серебра, связанный с антителами к иммуноглобулинам человека или стафилококковым белкам А или G (Патент РФ №2298795, 10.05.2007). Набор предназначен для одновременного выявления антител различной специфичности к возбудителям нескольких инфекционных заболеваний и используется в клинической практике.

Проведенный заявителем анализ уровня техники, включающий поиск по патентам и научно-техническим источникам информации, показал, что сведений о диагностикумах, предназначенных для выявления антирабических антител в сыворотках продуцентов методом дот-иммуноанализа, не обнаружено.

Технической задачей настоящего изобретения является получение диагностикума для оценки уровня активности антирабических сывороток продуцентов и готового препарата in vitro методом дот-иммуноанализа, обеспечивающего получение достоверных результатов в короткие сроки, простого в исполнении и не требующего специального оборудования для учета результатов анализа.

Технический результат заключается в расширении возможности определения специфической активности антирабических сывороток и иммуноглобулина.

Технический результат достигается тем, что в диагностикуме, содержащем маркер, сорбционно связанный с иммунореагентом и стабилизированный буферной смесью, в качестве маркера используют наночастицы коллоидного золота размером 15-17 нм, в качестве иммунореагента — инактивированный фиксированный вирус бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии, применяемой в производстве антирабического иммуноглобулина при получении рабического антигена для иммунизации продуцентов, а в качестве стабилизатора — 0,5% раствор полиэтиленгликоля-20М (ПЭГ-20М).

Как вариант возможно использование в качестве иммунореагента гликопротеида, выделенного из вируса бешенства. Гликопротеид — поверхностный белок, ответственный за индукцию синтеза и выработку вируснейтрализующих антител. Гликопротеид выделяют, обрабатывая очищенный вирус неионным детергентом тритоном Х-100 (Кузнецова С.В. с соавт., 1981).

Диагностикум для определения специфической активности антирабических сывороток и иммуноглобулина методом дот-иммуноанализа представляет собой гидрозоль золота с размером частиц 15-17 нм, сорбционно связанный с антигеном — инактивированным фиксированным вирусом бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии или гликопротеидом вируса бешенства в соотношении по объему маркера к иммунореагенту от 10:1 до 320:1 и стабилизированный 0,5% раствором полиэтиленгликоля-20М.

Способ приготовления диагностикума включает следующие этапы.

При выборе маркера предпочтительным является применение коллоидных металлов, преимущество которых заключается в полной безопасности для исследователей при использовании их в работе по сравнению с радиоизотопными и ферментными метками. В качестве маркера используют коллоидный раствор золота, обеспечивающий прочное адсорбционное взаимодействие с высокомолекулярными субстанциями. Стабилизация частиц золота макромолекулами осуществляется благодаря электростатическим и гидрофобным взаимодействиям. Свойства коллоидного раствора золота позволяют получить четкие результаты специфических реакций за счет его интенсивной окраски и визуализировать результаты анализа непосредственно после взаимодействия исследуемого образца с диагностикумом, следовательно, не требуется дополнительная стадия субстратного проявления, как в ИФА. Преимущества применения коллоидного золота в качестве метки описаны рядом авторов (Богатырев В.А. с соавт., 1991; Хлебцов Н.Г. с соавт., 1995; Загоскина Т.Ю. с соавт., 1998, 1999; Краснов Я.М., 2003).

Читайте также:  Молоко крс при бешенстве

Приготовление коллоидного раствора золота с диаметром частиц 15-17 нм осуществляют по методу Г.Френса (Frens G. Controlled nucleation for the particle size in monodisperse gold suspension // Nature Phys. Sci, 1973), в соответствии с которым в колбу Эрленмейера с обратным холодильником наливают 241,4 мл деионизованной воды, доводят ее до кипения на магнитной мешалке с электроподогревом. Затем последовательно добавляют 2,5 мл 1% золотохлористоводородной кислоты (HAuCl4) и, увеличивая обороты мешалки, 7,8 мл 1% раствора цитрата натрия, после чего продолжают кипятить раствор в течение 20 минут, до появления красного цвета. Метод позволяет получать достаточно стабильные и гомодисперсные золи золота необходимого диаметра частиц.

2. Фильтрация раствора иммунореагента.

Фильтрацию раствора, содержащего инактивированный фиксированный вирус бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии или гликопротеид вируса бешенства, используемого в качестве иммунореагента, осуществляют через нитроцеллюлозные фильтры «Millipore» (США) с размером пор 0,22 мкм.

3. Определение «золотого числа».

«Золотое число» определяют по известной методике Жигмонди Р. (Коллоидная химия. — Харьков, Киев: Изд-во НК Снаба УССР, 1933).

Значение рН исходного коллоидного раствора золя с наночастицами золота диаметром 15-17 нм составляет 5,8-6,0. Для оптимальных условий стабилизации увеличивают рН коллоидного раствора золота поташом (0,2М К2СО3) до рН 7,0. Для определения «золотого числа» в иммунологических планшетах делают ряд двойных разведений антигена (по 20 мкл) на деионизованной воде. В каждую лунку добавляют 200 мкл золя коллоидного раствора золота, имеющего оптимальное значение рН 7,0. Через 5 минут в каждую лунку добавляют 20 мкл раствора 10% NaCl. Последняя лунка в ряду разведений конъюгата, не изменившая своего цвета после добавления солевого раствора, содержит минимальное количество антигена, необходимое для защиты коллоидного раствора золота от его солевой агрегации — «золотое число».

4. Связывание частиц маркера с иммунореагентом.

Для связывания частиц маркера с иммунореагентом в раствор коллоидного золота с оптимальным значением рН 7,0 добавляют при интенсивном перемешивании на магнитной мешалке необходимое количество антигена в соотношении по объему маркера к иммунореагенту от 10:1 до 320:1 в соответствии с выявленным «золотым числом».

5. Стабилизация полученного конъюгата.

С целью блокировки свободных сайтов поверхности наночастиц золота и вторичной стабилизации конъюгата к нему добавляют 0,5% раствор высокомолекулярного полимера ПЭГ-20М до конечной концентрации 0,02% и перемешивают на мешалке в течение 15 минут. Затем полученный диагностикум выдерживают при температуре +3-5°С не менее 1 часа. По истечении данного времени диагностикум готов к применению.

Специфичность полученного диагностикума подтверждена постановкой дот-иммуноанализа с набором антивирусных и антибактериальных сывороток (таблица 2).

Технический результат достигается также использованием заявляемой тест-системы для оценки уровня активности антирабических сывороток продуцентов и готового препарата in vitro методом дот-иммуноанализа. В состав тест-системы входят:

1. Полоски нитроцеллюлозной мембраны (НЦМ) с размером пор 0,45 мкм с очерченными квадратами для нанесения исследуемых образцов. Ширина мембраны позволяет наносить исследуемые образцы в три ряда, а длина — наносить десять последовательных двойных разведений каждого образца. На верхний и нижний ряды каждой мембраны нанесены аликвотами по 2 мкл положительный и отрицательный контрольные образцы из ряда двойных разведений, начиная с 1:20. В качестве положительного контрольного образца использован отраслевой стандартный образец специфической активности антирабического иммуноглобулина, в качестве отрицательного — нормальная лошадиная сыворотка.

2. Диагностикум, представляющий собой гидрозоль золота размером 15-17 нм, сорбционно связанный с инактивированным фиксированным вирусом бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии или гликопротеидом вируса бешенства.

3. Физический проявитель для усиления цветового сигнала иммунологической реакции, содержащий растворимую соль — нитрат серебра и восстанавливающие агенты. Компоненты проявителя представлены в виде сухих навесок для последующего их растворения. Проявитель готовят непосредственно перед использованием. Для приготовления трехкомпонентного проявителя, состоящего из 0,2% раствора нитрата серебра (0,025 г на 250 мкл деионизованной воды), 0,2% раствора метола (0,1 г на 25 мл деионизованной воды), 0,5% раствора лимонной кислоты (0,625 г на 25 мл деионизованной воды), соединяют растворенные навески в следующих соотношениях: 600 мкл деионизованной воды, 400 мкл раствора лимонной кислоты, 1000 мкл раствора метола и 40 мкл раствора нитрата серебра.

4. Раствор для блокировки свободных сайтов связывания НЦМ — 0,5% раствор высокомолекулярного полимера ПЭГ-20М или 1-3% раствор бычьего сывороточного альбумина (БСА).

5. Деионизованная вода для титрования исследуемых образцов и для отмывки НЦМ.

6. Пленка типа «Parafilm» для изготовления пакета-камеры для мембран.

Определение уровня содержания специфических антител в гипериммунных сыворотках продуцентов и/или в готовом препарате антирабического иммуноглобулина методом дот-иммуноанализа с использованием заявляемой тест-системы осуществляют следующим образом.

1. Готовят последовательные двукратные разведения исследуемых образцов в деионизованной воде 1/20, 1/40, 1/80 и т.д. по 20 мкл. Для разведения сыворотки 1/20 необходимо взять 50 мкл сыворотки и 950 мкл деионизованной воды.

2. Исследуемый образец наносят на мембрану аликвотами по 2 мкл в виде последовательного ряда точек, начиная с последнего разведения. Полоску мембраны с нанесенными образцами высушивают при комнатной температуре.

3. Заливают мембрану на 15 минут для блокировки свободных сайтов связывания 0,5% раствором ПЭГ-20М или 1-3% раствором БСА, приготовленными на деионизованной воде.

Мембрану промывают деионизованной водой трижды по 1 минуте.

4. Заблокированную мембрану помещают в пакетик из пленки типа «Parafilm», куда добавляют 400 мкл диагностикума. Мембрану выдерживают до появления красных пятен.

5. Промывают мембрану деионизованной водой трижды по 1 минуте.

6. Проводят процедуру усиления цветового сигнала в растворе физического проявителя с последующей отмывкой в деионизованной воде и высушиванием при комнатной температуре.

7. Проводят учет результатов. За титр сыворотки или иммуноглобулина принимают то наибольшее разведение, при котором визуально регистрируют четко различимое пятно.

ПРИМЕР 1. Определение специфической активности гипериммунных антирабических сывороток и иммуноглобулина in vitro с использованием диагностикума и сравнение результатов реакции нейтрализации и дот-иммуноанализа.

При определении специфической активности антирабических сывороток и иммуноглобулина методом дот-иммуноанализа с использованием диагностикума в качестве отрицательного контрольного образца была взята нормальная лошадиная сыворотка, в качестве положительного — препарат антирабического гетерологичного иммуноглобулина серии 35. Для определения титра специфических антител в гипериммунных сыворотках и готовом препарате антирабического иммуноглобулина готовят серию двукратных разведений на деионизованной воде исследуемых образцов, начиная с 1:20. Двукратные разведения наносят на нитроцеллюлозную мембрану (фирма Millipore, США; 0,45 мкм) и высушивают ее. Свободные сайты связывания блокируют 1-3% раствором бычьего сывороточного альбумина или 0,5% раствором полиэтиленгликоля 20-М. Промывают мембрану трижды по 1 минуте деионизованной водой. После процедуры отмывания полоску помещают в конверт из пленки типа «Parafilm» и инкубируют в растворе диагностикума при комнатной температуре до появления красных пятен, с последующей отмывкой в деионизованной воде. Затем проводят процедуру усиления цветового сигнала иммунологической реакции в растворе физического проявителя в течение 1-2 мин при комнатной температуре, с последующей отмывкой в деионизованной воде и высушиванием при комнатной температуре. После процедуры усиления учитывают результаты, принимая за титр сыворотки или иммуноглобулина то наибольшее разведение, при котором визуально регистрируют четко различимое пятно.

При исследовании специфической активности препарата антирабического иммуноглобулина (АИГ) положительный результат регистрировали в разведении 1:5000-1:10000, у отдельных серий — до 1:20000, активность гипериммунных антирабических лошадиных сывороток соответствует уровню 1:320-1:640, у отдельных сывороток до 1:1280.

Для выявления корреляции результатов дот-иммуноанализа и РН проведено сравнительное изучение 13 серий препарата гетерологичного антирабического иммуноглобулина. Постановку РН проводили по общепринятой методике («Методы лабораторных исследований по бешенству», ВОЗ, 1975) на белых мышах 3-4-недельного возраста.

Результаты исследований представлены в таблице 1. Титры специфических антител, выявленные в реакции нейтрализации на мышах, колебались в пределах от 1:2576 до 1:13772, титры специфических антител, определенные в дот-иммуноанализе (ДИА), — от 1:2500 до 1:20000. Показана линейная корреляция между результатами РН и дот-иммуноанализа, коэффициент корреляции r=0,9.

ПРИМЕР 2. Определение специфичности диагностикума в дот-иммуноанализе с набором антивирусных и антибактериальных сывороток.

Определение специфичности диагностикума проводили с использованием набора иммунных антивирусных и антибактериальных сывороток, включающего: сыворотку против вируса инфекционного ринотрахеита КРС, сыворотку против вируса инфекционной анемии лошадей (ИНАН), сыворотку против вируса лейкоза КРС; чумную, холерную 01, псевдотуберкулезную, бруцеллезную и хламидийную лошадиные сыворотки. В качестве отрицательного контрольного образца была взята нормальная лошадиная сыворотка, в качестве положительного — препарат антирабического гетерологичного иммуноглобулина серии 35. На мембрану наносят двукратные разведения исследуемых сывороток. Дот-иммуноанализ проводят так, как описано в примере 1. В ходе анализа выявлено, что ни с одной из иммунных сывороток, перечисленных выше, не зарегистрировано положительной реакции даже в начальных разведениях. Результаты анализа представлены в таблице 2.

Таким образом, настоящее изобретение позволяет выявлять методом дот-иммуноанализа уровень содержания специфических антител как в готовом препарате антирабического иммуноглобулина, так и в гипериммунных сыворотках продуцентов на этапе иммунизации животных (при производстве препарата). Постановка дот-иммуноанализа с заявляемым диагностикумом проста и экономична, позволяет получить результаты в течение короткого времени (время анализа обычно не превышает 4-5 часов), не требует наличия дорогостоящего оборудования и аппаратуры. При реализации изобретения отпала необходимость в использовании инфекционного агента и большого количества дорогостоящих животных, требующихся для постановки реакции нейтрализации. Кроме этого изобретение безопасно для исследователей при использовании его в работе по сравнению с радиоизотопными и ферментными маркерами. Коллоидное золото, используемое в качестве маркера, нетоксично и неаллергенно. Сконструированный диагностикум сохраняет свои основные свойства в процессе хранения (срок наблюдения — 1 год) без потери интенсивности окрашивания.

Таблица 1
Специфическая активность препарата антирабического иммуноглобулина в тестах in vivo (РЦ) и in vitro (ДИА)
№ серии АИГ Титр специфических антител в РН Количество LD50/0,03 мл в РН Активность в РН, МЕ/мл Титр специфических антител в ДИА
34 1:8000 333 320 1:5000-1:10000
35 1:8812 333 360 1:5000-1:10000
36 1:12912 333 410 1:10000-1:20000
37 1:7962 562,5 621 1:5000-1:10000
38 1:5623 576,5 634 1:5000-1:10000
39 1:2951 562,5 230 1:2500-1:5000
40 1:7130 469 358 1:5000-1:10000
41 1:8689 469 434 1:5000-1:10000
42 1:2576 576,5 291 1:2500
43 1:12302 617,8 419 1:10000
44 1:10000 617,8 341 1:10000
45 1:13772 316 556 1:10000-1:20000
46 1:10839 316 438 1:10000
Средняя геометрическая титров 1:8582 Средняя геометрическая титров 1:8558
Таблица 2
Результаты определения специфичности диагностикума для дот-иммуноанализа
Наименование сыворотки или препарата Результат дот-иммуноанализа
Нормальная лошадиная (отрицательный контроль) отрицательный
Иммунная сыворотка против вируса ИНАН лошадиная отрицательный
Иммунная сыворотка против вируса инфекционного ринотрахеита КРС отрицательный
Иммунная сыворотка против вируса лейкоза КРС отрицательный
Иммунная хламидийная лошадиная отрицательный
Иммунная чумная лошадиная отрицательный
Иммунная холерная 01 лошадиная отрицательный
Иммунная бруцеллезная лошадиная отрицательный
Иммунная псевдотуберкулезная лошадиная отрицательный
Антирабический гетерологичный иммуноглобулин серии №35 (положительный контроль) 1:5000-1:10000

1. Диагностикум для определения активности антирабических сывороток и препарата гетерологичного антирабического иммуноглобулина in vitro методом дот-иммуноанализа, содержащий маркер, сорбционно связанный с иммунореагентом и стабилизированный буферной смесью, отличающийся тем, что в качестве маркера используют гидрозоль золота с размером частиц 15-17 нм, в качестве иммунореагента — инактивированный фиксированный вирус бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии в соотношении по объему от 10:1 до 320:1 соответственно, а в качестве стабилизатора — 0,5%-ный раствор полиэтиленгликоля-20М.

2. Диагностикум по п.1, отличающийся тем, что в качестве иммунореагента используют гликопротеид, выделенный из вируса бешенства.

3. Тест-система для определения активности антирабических сывороток и препарата гетерологичного антирабического иммуноглобулина in vitro методом дот-иммуноанализа, включающая подложку с нанесенным на ее поверхность положительным контрольным образцом; растворы для отмывок, разведения образца и конъюгата, конъюгат и систему проявления, отличающаяся тем, что в качестве подложки используют нитроцеллюлозную мембрану, на поверхность которой нанесены в качестве положительного контрольного образца отраслевой стандартный образец специфической активности антирабического иммуноглобулина, в качестве отрицательного — нормальная лошадиная сыворотка; в качестве конъюгата используют гидрозоль золота с размером частиц 15-17 нм, сорбционно связанный с антигеном — инактивированным фиксированным вирусом бешенства производственного штамма «Москва-3253» из кроличьей вируссодержащей мозговой суспензии в соотношении по объему от 10:1 до 320:1 соответственно; в качестве раствора для отмывки и разведения образца используют деионизованную воду, и дополнительно содержит полимер для блокировки свободных сайтов связывания и пленку типа «Parafilm».

4. Тест-система по п.3, отличающаяся тем, что в качестве конъюгата используют гидрозоль золота с размером частиц 15-17 нм, сорбционно связанный с гликопротеидом вируса бешенства.

5. Тест-система по п.3, отличающаяся тем, что положительный и отрицательный контрольные образцы нанесены на полоску аликвотами по 2 мкл из ряда двойных разведении.

6. Тест-система по п.3, отличающаяся тем, что в качестве высокомолекулярных полимеров для блокировки, используют 1-3%-ный раствор бычьего сывороточного альбумина или 0,5%-ный раствор полиэтиленгликоля-20М.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *