Меню Рубрики

Гомозиготность у мужчин и бесплодие

Зачатие и рождение новой жизни есть величайшая тайна на Земле, над разгадкой которой трудились прославнейшие умы прошлых столетий, гении современной науки и будут трудиться ученые и практики будущих тысячелетий. Достижения современной репродуктологии позволили не только приоткрыть завесу таинства живорождения, но и добиться появления на свет миллионов желанных и долгожданных малышей, родителям которых не суждено было бы испытать счастье материнства и отцовства не будь у лучших представителей мировой науки безудержного стремления к познанию механизмов сохранения жизни на Земле.

Читателям этой статьи, как страстно желающим стать родителями, так и уже познавшим радости и трудности рождения детей, конечно известно сколь большое место в последние десятилетия приобрело экстракорпоральное оплодотворение (ЭКО) в лечении бесплодия и сколько малышей, благодаря этому методу, получило возможность появиться на свет. Однако даже такой, казалось бы, абсолютно эффективный метод лечения бесплодия, не позволяет в ряде случаев достичь зачатия и, что не менее важно, благополучного вынашивания долгожданной беременности.

Среди причин неудач ЭКО выделяют доимплантационные, имплантационные и постимплантационные осложнения. Если первые зачастую бывают связаны с недостаточно правильной подготовкой супружеской пары к программе ЭКО, погрешностях на этапе стимуляции овуляции, заборе ооцитов и переносе эмбриона в полость матки, то остальные подчас невозможно ни полноценно изучить, ни преодолеть. И поэтому наибольшие усилия сегодняшней репродуктивной науки направлены как раз на изучение механизмов имплантации эмбриона в матке и условий, при которых развитие плода будет наиболее благоприятным. В этом отношении репродуктологи всего мира едины во мнении, что разгадка причин неудач имплантации более чем в 80% случаев лежит в изучении сложных иммунологических процессов, которые стоят у истоков зарождения жизни.

Совершенствование иммунных механизмов в процессе эволюции призвано обеспечить биологическое сохранение вида и рождение здорового потомства. Однако «продолжительность благополучного существования вида не гарантирует виду благополучного существования в будущем» (Ли Ван Вален). Процессы «иммунологического скрининга» стоят в основе механизмов естественного отбора, известного нам еще из курса школьной биологии, согласно постулатам которого, выживают лишь сильнейшие представители вида, слабые же обречены на вымирание.

По этим же законам работает и женский организм, несущий на себе основную физиологическую нагрузку, связанную с беременностью, родами и грудным вскармливанием. Иммунные механизмы в матке работают таким образом, чтобы обеспечить выбор и успешную имплантацию эмбриона, имеющего оптимальные биологические характеристики.
Драма человеческого организма состоит в том, что, являясь венцом творения природы, человек имеет самый высокий риск получить при слиянии половых гамет продукт аномального зачатия, т.е. эмбрион, развитие которого привело бы к рождению больного ребенка. На пути появления на свет таких детей природа поставила особую иммунологическую защиту материнского организма, главная задача которой не ошибиться в выборе «правильного зародыша».

Известно, что в ходе репродуктивного процесса у человека оплодотворение яйцеклетки лишь в 20-35% случаев приводит к развитию беременности даже у абсолютно здоровых молодых супружеских пар. В остальных случаях происходит самопроизвольное прерывание беременности на очень ранних этапах, когда женщина еще даже не ощутила объективных признаков беременности. Так обеспечивается закон сохранения здоровья вида.

Однако существуют причины, по которым материнский организм может отторгать генетически здоровый эмбрион. Иммунологическая система женщины всегда стоит на страже биологических интересов матери. Если в ее организме есть причины, по которым беременность является фактором риска, ведущим к ухудшению общего состояния женщины и провоцирующим развитие заболеваний, то иммунологические процессы в матке могут заблокировать развитие данной беременности. Не зря иммунологи называют организм матери «крепостью, которую героический эмбрион должен взять штурмом».

Для успеха имплантации в полости матки должны в определенный момент времени создаться абсолютно идеальные с иммунологической точки зрения условия для обеспечения развития попавшего туда эмбриона. Французский ученый Шарль Тибо предложил обозначить этот период термином «имплантационное окно».

Экспериментальные исследования системы «мать-плод» показали, что важнейшим фактором отсутствия отторжения эмбриона является его анатомическая обособленность от организма матери. Эмбрион находится в плодном пузыре и сам по себе не имеет непосредственного контакта с материнскими тканями. Границей раздела между организмами матери и плода являются клетки трофобласта – пограничного с материнскими тканями слоя плаценты, в пределах которого и происходят все многогранные иммунологические процессы, определяющие в дальнейшем судьбу данной беременности. Наличие трофобласта позволяет эмбриону существовать в иммунологической безопасности от организма матери.

На заре развития иммунологии репродукции большинство ученых сходились во мнении, что во время беременности иммунный ответ матери подвергается супрессии, т.е. подавляется. Однако исследования последних лет показали, что беременность — это феномен не супрессии, а активации, запускающий особый каскад реакций, регулирующих формирование фето-плацентарного комплекса (плаценты), призванного обеспечить нормальное течение беременности. Активация иммунной системы во время беременности должна очень точно контролироваться, иначе возможно развитие патологических состояний, которые могут повлечь за собой прекращение развития данной беременности.

Выделяют несколько типов иммунологических нарушений, имеющих место при бесплодии и привычном невынашивании:

аутоиммунные факторы, при которых в организме матери вырабатываются специфические антитела к кардиолипину («волчаночный антикоагулянт») и другим фосфолипидам клеточных мембран (это состояние называют антифосфолипидным синдромом), к ДНК, белкам щитовидной железы (при аутоиммунном тиреоидите). Выработка этих антител ведет как к нарушению процесса имплантации, так и к прерыванию беременности на более поздних сроках.
наличие антиспермальных антител, которые могут заблокировать как сам процесс оплодотворения яйцеклетки, так и имплантацию эмбриона в матке.
нарушение иммунитета в целом, которое проявляется в увеличении выработки в крови у женщины естественных киллеров, обладающих способностью уничтожать эмбрион, как чужеродный объект. Такие состояния могут возникать при любых иммунодефецитных нарушениях, сопровождающих вирусные и бактериальные инфекции.
аллоимунные факторы, связанные с состоянием главного комплекса гистосовместимости — МНС (Major Histocompatibilty Complex), который у человека получил название HLA-комплекс (Human Leucocyte Antigens).

Бурное развитие вспомогательных репродуктивных технологий, увеличение использования метода ЭКО для лечения бесплодных пар и неустанные поиски способов повышения процента удачных попыток определило резкое возрастание интереса как репродуктологов, так и самих пациентов к системе HLA, которой первично заинтересовались в рамках трансплантологии (науке о пересадке органов и тканей).

Целью написания этой статьи явилась попытка объяснить загадку предотвращения иммунного отторжения эмбриона материнским организмом, которая напрямую связанна с особенностями главного комплекса гистосовместимости.

Науке давно известно, что закономерности всех процессов в организме заложены в структуре ДНК. Интенсивность и специфичность иммунного ответа человека также кодируется генетически, и заведуют этим гены HLA-комплекса, расположенного на коротком плече 6 хромосомы человека. Главный комплекс гистосовместимости был открыт в 40-х годах ХХ века, в 50-60-х годах знания о его структуре были значительно пополнены работами Dausset, Van Rood, Payne и Bodmer. Структура HLA-комплекса человека отличается огромной вариабельностью, количество различных HLA-генотипов исчисляется несколькими миллионами, поэтому HLA-антигены можно рассматривать как индивидуальный биометрический паспорт человека, обозначающий принадлежность к конкретному организму. Сочетание HLA-генов столь же индивидуально, как и отпечатки пальцев.

Наука, изучающая особенности HLA-системы и ее участие в иммунологических процессах в организме, называется иммуногенетикой. HLA-гены кодируют выработку специфических белков, расположенных в виде антител на поверхностях лимфоцитов (белых клеток крови) и некоторых других ядросодержащих клеток. Эти белки напрямую участвуют в реакциях иммунного ответа.

Выделяют три класса HLA-антигенов: I, II и III. Класс I представлен классическими HLA-А, -В, -С локусами и недавно открытыми HLA-Е, -F и G. Класс II- HLA-DR, -DQ и DP локусами, класс III содержит продукты генов, кодирующих компоненты противоинфекционного иммунитета. Как правило, хромосомный регион, кодируемый HLA-A,-B,-C,-DR,-DQ,-DP аллелями, наследуется как единый блок как один гаплотип. Таким образом, ребенок получает один гаплотип от матери и другой от отца. Если человек наследует два одинаковых аллеля одного гена, то это гомозиготный индивидуум, если два различных аллеля одного гена — это гетерозиготный индивидуум.

Драма гомозигот в том, что по законам сохранения вида они выводятся из репродуктивного процесса всеми возможными способами. Это может проявляться на первый взгляд ничем не связанными с иммуногенетикой причинами. Например, женщина может перенести воспаление придатков, осложнившееся спаечным процессом в маточных трубах и, как следствие, внематочной беременностью. Далее такая женщина будет предпринимать попытку забеременеть с помощью метода ЭКО, полагая, что причиной ее бесплодия является только трубно-перитонеальный фактор и, надеясь на получение положительного результата с 1-2 попытки, т.к. известно, что трубно-перитонеальный фактор бесплодия очень успешно лечится с помощью программ ЭКО. Когда же беременность не наступит по прошествии 3-4 попыток и будет проведено обследование на иммунологические причины бесплодия, окажется, что женщина гомозиготна по системе HLA. Таким образом, развитием воспалительного процесса в трубах природа просто лишила такую женщину возможности продолжения рода, как менее жизнеспособного индивидуума.

Причиной снижения жизнеспособности гомозиготных индивидуумов является то, что с HLA-антигенами I и II класса ассоциируется предрасположенность ко многим аутоиммунным и иммунопатологическим заболеваниям (антиген HLA-B27- с болезнью Бехтерева, HLA-DR4- с ревматоидным артритом тяжелого течения, HLA-D8-с болезнью Аддисона, HLA-B35-с инфекционным мононуклеозом, HLA-B7- с аллергией к пыльце растений, HLA-DR3,-DR4,-DQ3-с сахарным диабетом I типа и т.д., этот список можно было бы продолжать до бесконечности). Если же человек является носителем двух одинаковых HLA-антигенов, то вероятность развития болезни, к которой этот человек предрасположен, многократно увеличивается и природа различными способами лишает этого человека способности к деторождению либо резко уменьшает его шансы воспроизвести потомство. Подобная ситуация возникает у возможного эмбриона, когда родители являются совместимыми друг с другом более, чем по трем локусам HLA-комплекса.

В настоящее время существует генетическая гипотеза, согласно которой главный комплекс гистосовместимости сцеплен с так называемыми рецессивными летальными генами, что ведет к нарушению репродуктивного процесса, внутриутробной гибели плода, порокам развития потомства и повышает риск развития злокачественных заболеваний. Это проявляется у гистосовместимых родителей хроническими самопроизвольными выкидышами на самых разных сроках (от 7 дней с момента зачатия, что и определяет неудачи ЭКО, до практически доношенной беременности).

Доказанная множеством исследований иммунологическая гипотеза включает аргументы, подтверждающие, что идентичность HLA-антигенов у супругов вызывает снижение иммунного ответа матери, ведущее к нарушению процессов имплантации и хроническим спонтанным абортам.

Известно, что важнейшим аспектом формирования нормальных взаимоотношений между материнским организмом и эмбрионом является генетически детерминированная антигенная несовместимость матери и плода. Через 96 часов после оплодотворения развивающийся эмбрион начинает экспрессировать HLA-антигены отцовского происхождения. Казалось бы, чужеродные антигены, попадая в кровоток матери должны вызывать реакцию иммунного отторжения плода, но в норме этого не происходит. «Иммунологический парадокс беременности» обусловлен наличием на уникальной ткани трофобласта (пограничного слоя между слизистой оболочкой матки и собственно тканями эмбриона) дополнительных антигенов HLA-комплекса, идентифицированный как HLA-G-локус I класса. Благодаря наличию этого антигена, клетки трофобласта могут индуцировать защитные иммунные реакции, такие как образование клеток-супрессоров классического иммунного ответа и блокирующих антител (MLR-Б-АТ), защищающих эмбрион от иммунной атаки материнского организма. Наличие достаточной выработки организмом матери MLR-Б-АТ является необходимым атрибутом нормальной беременности, отсутствие этих антител четко связано с развитием выкидышей. У супружеских пар, имеющих 2 и более одинаковых локусов HLA-антигенов, продукция этих антител резко снижена из-за генетической «похожести» организмов матери и эмбриона. Иными словами, большое число совпадений по антигенам HLA приводит к тому, что организм матери распознает эмбрион как свою собственную мутированную (раковую) клетку, против которой начинает работать механизм иммунологического уничтожения.

В последние годы учеными разработан достаточно эффективный метод лечения этой патологии, который широко используется при привычном невынашивании и подготовке HLA-совместимой пары к программе ЭКО. Суть его заключается в иммунизации женщины лимфоцитами мужа или донора, если на иммунолимфоцитотерапию кровью мужа нет адекватного увеличения выработки блокирующих антител. Однако следует помнить, что иммунолимфоцитотерапия показана только тем пациенткам, у которых снижен в крови уровень MLR-Б-АТ и нет других иммунологических причин нарушения имплантации эмбриона (АФС-синдрома и других аутоиммунных заболеваний), при которых применяются диаметрально противоположные способы терапии. Поэтому выбор метода лечения иммунологического бесплодия должен осуществляться только врачом-иммунологом или репродуктологом на основании результатов полноценного обследования супружеской пары на все иммунологические причины нарушения фертильности.

Итак, уважаемые настоящие и будущие мамы и папы, подведем итог нашему краткому экскурсу в зазеркалье рождения новой жизни. Совершенно очевидно, что генетический иммунологический код системы HLA оказывает самое непосредственное влияние на способность человека воспроизводить потомство. HLA-гистосовместимость супружеской пары, гомозиготность каждого отдельного индивидуума ассоциируются со снижением способности к нормальному зачатию и вынашиванию беременности. Однако большинство открытий в данной области на сегодняшний день остаются дискуссионными и не позволяют четко прогнозировать репродуктивные возможности супружеской пары. Врач может лишь с известной долей вероятности предположить наличие проблемы и рекомендовать соответствующее обследование и лечение, опираясь на знание мировой науки. Но нет на Земле ничего более непознанного и непредсказуемого, чем человеческий организм. И еще многие-многие века и тысячелетия человек будет познавать самого себя.

Читайте также:  Можно ли сделать эко при мужском бесплодии

источник

Продолжить или перестать —
Нет сил отвергнуть здравый смысл.
Как пьесу жизнь перелистать,
Без чувств, как мозг смакует мысль.
Таисия Рожинова

Клиника лечения бесплодия — так называют Курортную клинику женского здоровья в Пятигорске ЗАБЕРЕМЕНЕВШИЕ семейные пары.

На лечение генетического бесплодия к нам НАПРАВЛЯЮТ гинекологи, гинекологи-эндокринологи и репродуктологи Грозного, Черкесска, Нальчика, Дербента, Аргуна, Прохладного, Моздока, Ставрополя, Баксана, Аксая, Нефтекумска, Краснодара, Сочи, Карачаевска, Кизляра, Шали, Владикавказа, Махачкалы, Ростова-на-Дону, Железноводска, Ессентуков, Кисловодска, Пятигорска и других городов Южного Федерального Округа.

Мы благодарим родителей, которые лечились у нас и поделились с нами фотографиями своих детей. Это вдохновит тех, кто проходит лечение или пока еще мечтает.

Причиной бесплодия, невынашивания беременности, привычного невынашивания беременности в ряде случаев являются генетические причины: особенности мужа и/или жены.

ГЕНЕТИЧЕСКОЕ бесплодие — так нередко называют данную ситуацию в разговоре.

ИММУНОЛОГИЧЕСКАЯ несовместимость — так называют генетическое бесплодие репродуктологи и иммунологи.

Наиболее частой причиной генетического бесплодия и невынашивания беременности, является нарушение структуры или количества хромосом, поэтому исследование кариотипа мы проводим обоим супругам при всех формах бесплодия или привычного невынашивания беременности. О лечении бесплодия подробно.

Анализ кариотипа показан и в случаях выявления у плода при ультразвуковом исследовании или у новорожденного множественных ПОРОКОВ развития.

Наличие у супругов совпадающих то есть идентичных генов главного комплекса тканевой совместимости (сокращенно — HLA).

Система HLA (главный комплекс тканевой совместимости) представляет собой большой регион генома (большой участок в структуре биологической наследственной информации), ответственный за сохранение уникальности (биологической индивидуальности).

Начиная с 4-8-клеточной стадии деления оплодотворенной яйцеклетки и заканчивая преимплантационным периодом (4-9 сутки от дня зачатия), ткани эмбриона несут чужеродную генетическую информацию (аллоантигены).

С самых ранних сроков беременности возникает активный обмен антигенной (субклеточной) и клеточной информацией между матерью и плодом: благодаря общей кровеносной системе, отмершие естественным путем клетки эмбриона и фрагменты свободной (внеклеточной) эмбриональной ДНК попадают в кровоток матери, а материнские лимфоциты, эритроциты и биологически активные молекулы проникают через плацентарный барьер в кровоток плода.

Наличие у супругов совпадающих, то есть идентичных генов главного комплекса тканевой совместимости (HLA), приводит к формированию эмбриона, очень похожего на организм матери.

В этом случае не возникает необходимой для благополучного вынашивания антигенной стимуляции иммунной системы, а сама беременность воспринимается как собственные, но дефектные клетки. Итогом является самопроизвольный выкидыш.

Иными словами, 50% генов тканевой совместимости (HLA) наследуется плодом от отца и 50% — от матери. Таким образом, плод является наполовину чужеродным для организма матери.

Эта генетическая чужеродность имеет эволюционный смысл и является нормальным биологическим явлением, поддерживающим генетическое разнообразие человеческой популяции и запускающим каскад иммунологических реакций, направленных на сохранение беременности.

Кроме того, при совместимости генов повышается частота совпадения супругов по генам, вызывающим гибель эмбриона и плода.

Полагают, что к генам, предрасполагающим к невынашиванию и гибели эмбриона и плода, относятся DRB1, DQA1, DQB1, DR1, DR3, DR4, DR10.

В настоящее время определены более 40 генов, ассоциированных (связанных) с НЕВЫНАШИВАНИЕм беременности.

У семейных пар с совпадениями по двум и более аллелям системы HLA привычный выкидыш и очень ранние преждевременные роды (до 28 недель беременности) встречаются в 2 раза чаще.

При ранних потерях беременности выявляется совпадение супругов по трем аллелям системы HLA II класса в 51,6% случаев, по четырем аллелям в 25%, по пяти — в 14%, по шести — в 9% случаев.

Таким образом, биологическая суть выкидыша (отторжения эмбриона) заключается в необходимости достижения генетического разнообразия (гетерозиготности) индивидуума с целью активной приспособляемости вида в целом.

Гомозиготные индивидуумы имеют повышенный риск развития инфекционных, аутоиммунных и онкологических заболеваний, т.к. именно высокий полиморфизм (генетическое разнообразие) является необходимым условием полноценной активности иммунной системы человека.

Общность генов (совместимость генов) системы HLA у супругов и гомозиготность родителей (супружеской пары) и потомства (эмбрионов) значительно снижают возможность образования «блокирующих» антител, препятствующих иммунной атаке (атаке иммунной системы) матери в отношении эмбриона.

Именно этим объясняется высокий риск вырождения (прекращения) рода в последующих поколениях.

Мы рекомендуем проведение типирования по трем генам HLA II класса с целью поиска совпадающих аллелей супружеским парам с невынашиванием беременности и первичным бесплодием, в программах подготовки к внутриматочной инсеминации и ЭКО, при неудачных попытках ЭКО, а также будущим супругам, находящимся в родственных отношениях. Об искусственной инсеминации подробно.

3D-фото плода 28 недель.
Беременность у женщины 37 лет с первичным бесплодием 10 лет наступила через 2 месяца после искусственной инсеминации и проверки проходимости маточных труб в нашей Клинике

На анализ берется кровь из вены. Методом центрифугирования выделяют лейкоциты (белые кровяные тельца, на клеточных мембранах которых располагаются гены тканевой совместимости) и далее методом полимеразной цепной реакции исследуется HLA-фенотип.

Повышение свертываемости крови и повышенное содержание гомоцистеина в крови, могут быть причиной спонтанных (самопроизвольных) выкидышей и преждевременных родов, аномалий имплантации и структуры зародыша, нарушения фетоплацентарного кровотока и внутритробной гипоксии плода, преэклампсии и эклампсии, сосудистых осложнений.

Ряд полиморфизмов в генах фолатного цикла (отдельные варианты гена в генетическом многообразии генов) значительно повышает риск возникновения пороков сердца, нервной трубки, урогенитального тракта.

Целесообразно проводить анализ полиморфизмов в генах, кодирующих ряд ферментов фолатного цикла (метионин-синтаза (MTR); метионин-синтаза редуктаза (MTRR); метилентетрагидрофолат-редуктаза (MTHFR)), факторов свертывающей системы крови (F5 и F2) и в гене ренин-ангиотензин-альдостероновой системы (AGT, ACE), которые существенно повышают риск развития преэклампсии и эклампсии.

Гипербилирубинемия (желтуха) новорожденного часто обусловлена резус-конфликтом матери и плода. При повторных беременностях резус-отрицательной матери резус-положительным плодом иммунологическая несовместимость может стать причиной внутриутробной гибели плода в третьем триместре беременности.

В нашей Клинике лечения бесплодия можно выполнить обследование с целью выявления генетических причин бесплодия (генетического бесплодия, иммунологической несовместимости)
и ВСЕХ причин невынашивания беременности, провести обследование и подготовку к внутриматочной инсеминации, ЭКО, ИКСИ, беременности при близкородственном браке, привычном невынашивании беременности, мертворождении и рождении плода с пороками развития.

ВАЖНО начать двигаться в ПРАВИЛЬНОм направлении!

ВСЁ, что нужно знать о правильном направлении в лечении бесплодия, смотри ЗДЕСЬ:

Курортная клиника женского здоровья выполняет обследование и лечение генетического бесплодия как по платным услугам, так и в системе добровольного медицинского страхования.

МЕЖДУНАРОДНЫМ ПРИЗНАНИЕМ репутации и достижений Курортной клиники женского здоровья в разработке и внедрении эффективных и безопасных лечебных методик и качества предоставляемых медицинских услуг ЯВЛЯЕТСЯ НАГРАЖДЕНИЕ Курортной клиники женского здоровья в Пятигорске Международным СЕРТИФИКАТОМ КАЧЕСТВА SIQS в сфере медицины и здравоохранения. Международный Сократовский Комитет, Оксфорд, Великобритания и Швейцарский институт стандартов качества, Цюрих, ШВЕЙЦАРИЯ. Подробнее.

КЛИНИКА лечения БЕСПЛОДИЯ работает без выходных и праздничных дней:

понедельник — пятница с 8.00 до 20.00,
суббота — воскресенье с 8.00 до 17.00.

Лечение генетического бесплодия (иммунологической несовместимости) и выявление ВСЕХ причин бесплодия в Пятигорске по предварительной записи по многоканальному телефону 8 (800) 500-52-74 (звонок по России бесплатный), или +7 (928) 022-05-32 (для зарубежных звонков).

Задать ВОПРОС ОНЛАЙН врачу гинекологу, гинекологу-эндокринологу в Пятигорске можно по адресу info@kurortklinika.ru.

ЗАПИШИТЕСЬ ОНЛАЙН на прием к гинекологу в Пятигорске здесь.

Мы принимаем девушек и женщин из всех городов России, ближнего и дальнего зарубежья.

Мы в ПОЛНОМ вашем распоряжении при возникновении любых сомнений или пожеланий.

источник


Репродукция. Сексуальное предпочтение. Значение генов MHC в выборе сексуального партнера у млекопитающих было обнаружено в 70-х годах [Yamazaki K., et al,1975]. И в последующем, основная масса работ, посвященных поиску доказательств неслучайного выбора полового партнера, была выполнена на животных. Так, в работе Hedrick P.W. было установлено, что самки мышей предпочитают самцов, отличающихся от них по MHC, что фактически приводит к уменьшению пропорции гомозигот, усиливая генетический полиморфизм [Hedrick P.W., 1992]. Это связано с тем, что у животных MHC является источником уникального индивидуального запаха, который и влияет на индивидуальное распознавание, выбор партнера, «гнездовое» поведение и селективный блок беременности. [Jacob S., et al, 2002]. У домашних мышей и, возможно, у большинства млекопитающих, продукты генов MHC влияют и на иммунное распознавание и на индивидуальный запах аллель-специфическим образом. Сексуальный выбор на основе генов MHC приводит к получению в потомстве преимущественно MHC гетерозигот, что может не только усиливать резистентность к инфекциям, но также и препятствовать инбридингу в целом. Именно избежание имбридинга может быть наиболее важной функцией MHC-ассоциированного выбора партнера и основной селективной силой для сохранения разнообразия MHC генов у видов с подобными возможностями. [Potts W.K., et al, 1994]. У «нечистолинейных» людей трудно изучать механизмы отбора, связанные с сексуальным предпочтением, кроме того, влияние социально-культурной среды на процесс выбора полового партнера затрудняет исследования биологической роли системы HLA в процессах воспроизведения. Тем не менее, существует ряд исследований, посвященных этой теме. Так, в работе Jacob S. с соавт. (2002) было показано, что женщины могут определять различия запахов мужчин, отличающихся друг от друга только по одному аллелю HLA. Подтверждением неслучайного выбора партнеров служит также серия работ выполненных на племенах южноамериканских индейцев [Hedrick P.W., Black F.L., 1997] и в религиозной секте хатеритов (европеоиды). Оказалось, что количество гомозиготных по генам HLA индивидуальностей было ниже математически ожидаемого в соответствии с менделевским распределением [Kostyu D.D., et al, 1993; Robertson A., et al, 1999]. В то же время количество гомозиготных по трем другим, не-HLA локусам микросателитов, расположенных на 13 хромосоме, в отличие от локусов HLA, расположенных на 6 хромосоме, соответствовало расчетному. Было установлено также, что беременность у женщин из секты хатеритов, совпадавших с партнером по генам DRB1 наступала через более длительные интервалы времени по сравнению с парами, не совпадавшими по гену DRB1 [Ober C., et al, 1992], и в таких семьях было, соответственно, меньшее количество детей [Ober C., et al, 1988].

HLA гомозиготность и репродуктивный результат среди пар с невынашиванием беременности неясного генеза. Для исследования возможного значения HLA гомозиготности для репродуктивного результата было выполнено HLA типирование по гену DRB1 240 супружеских пар с повторными прерываниями беременности и неудачными ЭКО (экстракорпоральное оплодотворение). Проведенное исследование позволило сделать вывод о разном значении гомозиготности по HLA генам у мужчин и женщин для успешного развития беременности. У женщин с невынашиванием беременности неясного генеза (НБНГ) ни общее количество гомозигот, ни количество гомозигот разной DRB1 специфичности не отличались от таковых в обеих контрольных группах (женщины из пар, имеющих детей и здоровые доноры-женщины). У мужчин из пар, имеющих детей, общее количество гомозигот было в три раза меньше, чем у мужчин из пар с НБНГ и контрольной группой, что свидетельствует о том, что гомозиготность по гену HLA DRB1 является неблагоприятным фактором для репродуктивного успеха, хотя и не единственным. Так, например, из 74 пар, имеющих детей, 1 мужчина был гомозиготен по DRB1*02 и трое – по DRB1*07, то есть гомозиготность по генам HLA II у мужчин не является абсолютным препятствием для репродукции, и скорее всего, контролируется не только генами MHC. Представленные данные согласуются с мнением Black F.L. and Hedrick P.W. (1997), которые делают заключение, что взаимоотношения мать-плод является важной составляющй в сильной селекции против гомозигот (нет дефицита гомозигот, когда мать гомозиготна и отец гетерозиготен и большой дефицит, когда мать гетерозиготна и отец гомозиготен). [Black F.L., Hedrick P.W. 1997].

Невынашивание беременности и бесплодие неясного генеза.. Исследования, свидетельствующие о том, что HLA антигены могут влиять на развитие плода и последующий исход беременности были начаты в 60-х годах. В течение 60-70х годов были получены данные о том, что зародыши, несущие отцовские HLA антигены, отличавшиеся от материнских антигенов (гистонесовместимая беременность) могут иметь селективное преимущество в выживании по сравнению с зародышами, унаследовавшими отцовские HLA антигены, не отличавшиеся от материнских антигенов (гистосовместимая беременность) [Billington W.D., 1964; Clarke B., Kirby D.R.S., 1966; Kirby D.R., 1970; Beer A.E. and Billingham R.E., 1976; Алексеев Л.П. и Федорова О.Е., 1981; Алексеев Л.П. и соавт.1986]. Предполагалось, что гистосовместимая беременность не распознается материнской иммунной системой или материнский иммунный ответ не соответствует физиологическому, что может приводить к потере плода. Таким образом, было сделано предположение, что гистонесовместимая беременность является необходимым условием для успешной имплантации и роста плода, а повторные аборты могут быть связаны с избыточной HLA похожестью партнеров [Christiansen O.B., 1996].

Читайте также:  Лечиться ли бесплодие 1 степени у женщин

Однако, в большинстве более поздних работ, в которых были использованы методы ДНК типирования, уже не было обнаружено увеличения совпадений по генам HLA-DR и/или –DQ среди пар с повторными выкидышами [Christiansen O.B. et al., 1989; Ito K. et al., 1992; Takakuwa K. et al., 1992; Laitinen T. et al. 1993; Wagenknecht D.R. et al., 1997]. Только Ober C. et al. (1993) сообщали о значительном увеличении совпадений по HLA-DQ локусу среди пар с повторными выкидышами по сравнению с контролем при использовании ДНК типирования.

Другие исследования были посвящены HLA совпадению среди пар с необъяснимым бесплодием [Ober C. and van der Ven, 1997], которое, по мнению авторов исследований, может быть результатом пери-имплантационных потерь плода [Collins J.A. et al, 1983; Wilcox A.J. et al., 1988], что может быть следствием увеличенного HLA подобия между партнерами [Coulam C.B. et al., 1987; Creus M. et al., 1998]. Однако ряд исследователей не обнаружили значительных различий в HLA совпадениях партнеров между парами с необъяснимым бесплодием и фертильными парами [Nordlander C. et al., 1983; Persitz E. et al., 1985].

Совпадения по гену DRB1 среди пар с невынашиванием беременности неясного генеза. Пары с невынашиванием беременности неясного генеза (НБНГ) были проанализированы с точки зрения совпадения супругов по специфичностям гена HLA-DRB1 по сравнению с контрольными семьями, имеющими детей. Полученные данные свидетельствуют о том, что среди пар с НБНГ не было отмечено достоверного увеличения количества совпадающих по специфичностям гена HLA-DRB1 пар по сравнению с контрольными парами, имеющими детей.

HLA II и нарушение репродукции в результате инфекций. Хотя в различных популяциях факторы, приводящие к бесплодию, различаются, в общем считается, что 20-30% случаев бесплодия может быть связано с воспалительными заболеваниями тазовых органов, в результате чего может нарушаться нормальный транспорт и оплодотворение ооцита [Templeton A., et al., 1991]. В большинстве случаев эти заболевания вызывают инфекции, передающиеся половым путем (ИППП), так что воспалительные заболевания тазовых органов представляют связь между ИППП и бесплодием. Незначительное число работ посвящено изучению ассоциаций генов HLA и бесплодием, вызванным инфекциями. Так, ряд авторов исследовали связь генетических факторов хозяина и трубный фактор бесплодия, связанный с C.trachomatis. Оказалось, что DQA1*0102 и DQB1*0602 вместе с IL-10 -1082AA генотипом были значительно более частыми у пацинтов с трубным бесплодием по сравнению с контролем (0.18 и 0,02, p ^ 3. Аутоиммунные заболевания как возможный механизм действия отбора на HLA II.

В предыдущем разделе были приведены сведения о важном значении аутоиммунных заболеваний как причины репродуктивных неудач и вариантах генов HLA класса II, ассоциированных с репродуктивными проблемами у женщин. В настоящем разделе будут более подробно рассмотрено значение генов HLA класса II в развитии аутоиммунных заболеваний.

Аутоиммунные заболевания – заболевания с выраженной генетической основой, носят системный характер и поражают самые разные системы организма, причем, чем раньше возникает заболевание, тем более варажена его генетическая составляющая. Одними из главных генов, для которых установлена выраженная связь с развитием аутоиммунной патологии, являются гены иммунного ответа — HLA класса II.

Ассоциации генов HLA класса II и аутоиммунных заболеваний. В результате усилий ученых из разных стран мира получены данные о значении генов HLA для развития аутоиммунных заболеваний в разных популяционных группах. Установлены как положительно (см. табл.2), так и отрицательно ассоциированные с развитием заболеваний варианты генов HLA класса II (см. табл.3).

Если суммировать все перечисленные факты, представленные в таблицах 2 и 3, можно сделать некоторые предположения: первое – ассоциации гена DRB1 с аутоиммунными заболеваниями не зависят от национальной и расовой принадлежности, второе – одни и те же аутоиммунные заболевания могут быть ассоциированы с разными вариантами гена DRB1 и соответственно одни и те же варианты гена DRB1 могут быть ассоциированы с разными аутоиммунными нарушениями, то есть определенный набор вариантов гена DRB1 может маркировать не конкретные аутоиммунные заболевания, а предрасположенность к развитию аутоиммунного процесса в целом.

источник

Генетические факторы мужского бесплодия, их сочетания и спермиологическая характеристика мужчин с нарушением фертильности

Н.Ю. Сафина 1 , Т.А. Яманди 1 , В.Б. Черных 2, 3 , Л.В. Акуленко 1 , С.В. Боголюбов 4 , И.И. Витязева 4 , О.П. Рыжкова 2 , А.А. Степанова 2 , Т.А. Адян 2 , Е.А. Близнец 2 , А.В. Поляков 2
1 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; Россия, 127473 Москва, ул. Делегатская, 20, стр. 1;
2 ФГБНУ «Медико-генетический научный центр»; Россия, 115522 Москва, ул. Москворечье, 1;
3 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России; Россия, 117437 Москва, ул. Островитянова, 1;
4 ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России; Россия, 117036 Москва, ул. Дмитрия Ульянова, 11 Контакты: Наталия Юрьевна Сафина natal.s@mail.ru

Бесплодие диагностируют у 5–7 % мужчин в общей популяции [1]. Нарушение репродуктивной функции может быть вызвано генетическими, средовыми факторами, а также их сочетанием. К генетическим факторам нарушения фертильности относят хромосомные и генные мутации, эпигенетические изменения. Хромосомными аномалиями, обусловливающими нарушения фертильности у мужчин, являются числовые аномалии половых хромосом (синдром Клайнфельтера, гоносомный мозаицизм, сбалансированные структурные перестройки хромосом и несбалансированные перестройки хромосом, вариации числа копий (copy number variation)) [2].

Частыми генетическими нарушениями, которые связаны с мужским бесплодием, считаются синдром Клайнфельтера, микроделеции Y-хромосомы, мутации и полиморфизмы в гене муковисцидоза (CFTR) и в гене андрогенового рецептора (AR/HUMARA) [3].

Наиболее изученные микроструктурные хромосомные перестройки при мужском бесплодии – микроделеции длинного плеча Y-хромосомы. Их обнаруживают с частотой примерно 1 на 1000 мужчин [4]. AZF-делеции могут быть полными, т. е. целиком удаляющими один или более регион локуса AZF (AZFa, AZFb или AZFс), и частичными, не полностью захватывающими какой-либо из AZF-регионов. Почти все полные AZFделеции являются мутациями de novo и приводят к секреторной азооспермии или олигозооспермии тяжелой степени. Влияние частичных AZF-делеций на сперматогенез и фертильность мужчин может быть негативным, а может отсутствовать [5].

Мутации гена CFTR достаточно часто встречаются у мужчин с нарушением фертильности. Они вызывают муковисцидоз, синдром врожденной двусторонней аплазии семявыносящих протоков (congenital bilateral aplasia of vas deferens, CBAVD), обструктивную форму азооспермии [6, 7].

У мужчин с нарушением фертильности наблюдаются различные варианты CAG-полиморфизма в экзоне 1 гена AR/HUMARA. Нарушение сперматогенеза выявляется чаще у носителей «длинных» (27 и более) CAG-аллелей, чем у фертильных мужчин [3, 8].

Анализ научных публикаций свидетельствует о том, что, несмотря на большое количество исследований, четкой классификации генетических причин мужского бесплодия, которая учитывала бы все формы и фенотипические проявления, до сих пор не существует. Мало или фрагментарно изучены сочетания различных генетических факторов, снижающих фертильность, их клинические последствия и фенотипические эффекты.

Цель исследования – установить частоту генетических факторов, влияющих на мужскую репродуктивную функцию, их сочетаний и изучить их влияние на сперматогенез и сперматологические показатели.

Материалы и методы

Обследованы 393 неродственных российских мужчины, обратившихся по поводу бесплодия в браке. Проводили стандартное спермиологическое, цитогенетическое, молекулярно-генетическое исследование (микроделеций локуса AZF, мутаций и полиморфизмов гена CFTR и числа CAG-повторов гена AR).

По результатам цитогенетического исследования были сформированы 3 группы: 1-я группа – 135 мужчин с числовыми аномалиями половых хромосом (с синдромами Клайнфельтера, дисомии Y-хромосомы); 2-я группа – 58 мужчин, имеющих сбалансированные структурные мутации хромосом (реципрокные и робертсоновские транслокации, инверсии); 3-я группа – 200 мужчин с нормальным кариотипом (46,XY).

Стандартный спермиологический анализ выполняли по общепринятой методике; его результаты оценивали по критериям Руководства Всемирной организации здравоохранения по лабораторному исследованию эякулята человека и взаимодействия сперматозоидов с цервикальной слизью [9].

Для цитогенетического исследования использовали препараты метафазных хромосом культивированных лимфоцитов периферической крови в соответствии со стандартной процедурой с использованием GТGокрашивания. Результаты цитогенетического исследования приведены согласно Международной системе цитогенетической номенклатуры хромосом человека [10]

Молекулярно-генетическое исследование выполняли на ДНК, выделенной из лимфоцитов периферической крови с помощью набора реактивов для выделения DNA Prep100 по протоколу производителя.

Для поиска микроделеций Y-хромосомы применяли метод мультиплексной амплификации. Для определения микроделеций в локусе AZF использовали набор из 19 маркеров (SRY, ZFY, sY84, sY86, sY127, sY134, sY254, sY255, sY615, sY1237, sY1235, sY121, sY124, sY1302, sY142, sY1192, sY1197, sY1206, sY1125). Детально методика описана ранее [11].

Ген CFTR анализировали на наличие 22 частых мутаций (F508del, CFTRdele2,3 (21kb), 394delTT, I507del, 1677delTA, 2143delT, 2184insA, 394delTT, 3821delT, L138ins, G542X, W1282X, N1303K, R334W, 3849+10kbC>T, 604insA, 3944delGT, S1196X,621+1q>t, E92K, 4022insT, 4015delA, 3272-26A>T), суммарно составляющих около 77 % от общего числа поврежденных хромосом, а также полиморфизм IVS8-Tn. Детально методика описана ранее [6].

Для анализа CAG-полиморфизмов экзона 1 гена AR/HUMARA применяли подход, предложенный R.C.Allen и соавт. [12].

Статистический анализ проводили с помощью программы Excel из пакета программ Microsoft Office 2013, используя точный критерий χ2 Пирсона. Значимыми считали различия при уровне вероятности р 0,05).

Частые мутации и полиморфизм IVS8-5Т гена CFTR проанализированы у 164 пациентов: у 25 мужчин из 1-й группы, 16 пациентов 2-й группы, 123 пациентов 3-й группы. Мутации или IVS8-5Т (аллель 5Т – мягкая варьирующая мутация гена CFTR) обнаружены у 18 пациентов: у 2 пациентов I группы (5T), у 3 мужчин 2-й группы (мутация и гомозиготность по 5Т), у 13 пациентов 3-й группы (3 мутации и 10 аллелей 5T). Между этими группами не выявлено значимых различий в частоте мутаций (χ2 = 0,971; p >0,05). Обнаружены следующие мутации: у 8 пациентов – аллель 5Т, у 3 – мутации в гетерозиготной форме (F508del/N, 2184insA/N, N1303K/N), у 2 – мутации CFTR в компаунд-гетерозиготном состоянии с IVS8-5Т (mutCFTR/5T), что характерно для генотипа, не вызывающего муковисцидоз, но приводящего у мужчин к развитию синдрома CBAVD и обструктивной азооспермии.

Полиморфизм числа CAG-повторов в экзоне 1 гена AR/HUMARA исследован у 152 мужчин: у 86 пациентов 1-й группы, 16 пациентов 2-й группы и 52 пациентов 3-й группы. Количество CAG-повторов варьировало от 14 до 37. Среднее количество CAG-повторов существенно не различалось между группами и составило в 1-й группе 22 ± 3, во 2-й группе – 22 ± 3, в 3-й группе – 23 ± 3. Полные мутации данного локуса гена AR (количество CAG-повторов более 40) не выявлены ни у одного из обследуемых. Повышенное количество CAGповторов (≥ 27) обнаружено у 11 (13 %) пациентов 1-й группы, у 1 (7 %) пациента 2-й группы и у 7 (13,4 %) пациентов 3-й группы. Сниженное (≤ 17) количество CAGповторов определено у 5 (5,8 %) мужчин с синдромом Клайнфельтера и 1 (7 %) пациента из 2-й группы. Среди пациентов 3-й группы «короткие» CAG-аллели не выявлены. Значимых различий частоты «длинных» CAG-аллелей между пациентами с нормальным и аномальным кариотипом не обнаружено (χ2 = 0,003; р >0,5).

Сперматологическая характеристика мужчин с нарушениями репродуктивной функции, имеющих числовые аномалии половых хромосом (1-я группа). В этой группе обследовано 120 пациентов с синдромом Клайнфельтера и 15 пациентов с дисомией Y-хромосомы, имеющих их мозаичные или другие цитогенетические варианты (табл. 1).

Наиболее частый цитогенетический вариант синдрома Клайнфельтера представлен кариотипом 47,ХХY, который выявлен у 105 (87,5 %) пациентов. Мозаичные формы и другие цитогенетические варианты синдрома Клайнфельтера обнаружены у 15 (12,5 %) пациентов.

Среди мужчин с дисомией Y-хромосомы ее регулярная форма – кариотип 47,XYY – определен у 13 (86,6 %). У 2 (13,4 %) мужчин с дисомией Y-хромосомы выявлены мозаичный вариант 46,XY/47,XYY и сочетание дисомии Y-хромосомы с робертсоновской транслокацией – 46,XYY,der(13;14)(q10;q10).

В 1-й группе спермиологическое исследование проводили у 87 пациентов, из них 76 – с синдромом Клайнфельтера и 11 – с дисомией Y-хромосомы. Анализ эякулята не выполнен остальным пациентам в связи с недоступностью биологического материала. Нарушения сперматогенеза различной степени тяжести диагностированы у всех обследованных пациентов (табл. 1).

Таблица 1. Цитогенетическая и сперматологическая характеристика пациентов 1-й группы

Читайте также:  Как можно узнать если у тебя бесплодие
Кариотип Число пациентов Форма патозооспермии Число пациентов
абс % абс. %
Цитогенетические варианты синдрома Клайнфельтера
47,XXY 105 87,5 Азооспермия 55 52,4
Олигоастенотератозооспермия тяжелой степени 6 5,7
Криптозооспермия 2 1,9
mos 46,XY/47,XXY 9 12 10 Азооспермия 7 58,3
2 16,6
mos 46,XX/47,XXY 1 Астенотератозооспермия 2 16,6
mos 46,XY/46,XX/47,XXY 1 Азооспермия 1 8,3
mos 46,XY/47,XХY/48,XXXY 1 Олигоастенотератозооспермия тяжелой степени
Цитогенетические варианты синдрома дисомии Y-хромосомы
47,XYY 13 86,7 Азооспермия 4 36,3
Олигоастенотератозооспермия тяжелой степени 5 45,4
Астенотератозооспермия 1 9
Астенозооспермия 1 9
mos 46,XY/47,XYY 1 0,7 Не исследовали
46,XYY,der(13;14)(q10;q10) 1 0,7 Не исследовали

Азооспермия или криптозооспермия обнаружена у 67 (88 %), олигоастенотератозооспермия тяжелой степени – у 7 (9 %), астенотератозооспермия – у 2 (2,6 %), астенозооспермия – у 3 % спермиологически обследованных пациентов с синдромом Клайнфельтера. Азооспермия обнаружена у 4 (36,4 %), олигоастенотератозооспермия – у 5 (45,5 %), астено-/тератозооспермия – у 2 (18 %) спермиологически обследованных пациентов с дисомией Y-хромосомы.

При молекулярно-генетическом анализе у 23 (17 %) из 123 обследованных пациентов 1-й группы выявлены различные генетические факторы: у 12 пациентов с синдромом Клайнфельтера, у 3 пациентов с дисомией Y-хромосомы – частичные делеции региона AZFc (b2/b3, gr/gr), у 7 пациентов с синдромом Клайнфельтера – увеличенное (27 и более), у 2 – уменьшенное (17 и менее) количество CAG-повторов в экзоне 1 гена AR/HUMARA. Гетерозиготность по CAGаллелям определена у 55 пациентов, гомозиготность – у 53 пациентов с синдромом Клайнфельтера, в том числе среди мозаиков гетерозиготы – 3, гомозиготы – 9.

У всех пациентов, имеющих сочетание хромосомных аномалий и генных мутаций/факторов нарушения мужской фертильности, выявлены тяжелые формы патозооспермии (табл. 2).

Таблица 2. Сочетания аномалий половых хромосом с генетическими факторами, связанными со снижением фертильности у мужчин

Генотип Число пациентов, n = 23 Тип патозооспермии Число пациентов,n = 21
абс. % абс. %
47,XXY; del b2/b3 5 22 Азооспермия 4 100
47,XXY; del gr/gr 3 13 Азооспермия 2 100
mos 46,XY/47,XXY; del b2/b3 2 9 Азооспермия 2 100
47,XXY; CAG˃28 5 22 Азооспермия 5 100
47,XXY; CAG˂16 1 4 Не исследовали
47,XXY; del b2/b3; CAG˂16 1 4 Азооспермия 1 100
mos 46,XХ/47,XXY; CAG˃28 1 4 Азооспермия 1 100
47,XXY; IVS8-5T(5T/9T); CAG˃28 1 4 Азооспермия 1 100
mos 46,XY/47,XXY; del b2/b3; IVS8-5T(5T/7T) 1 4 Азооспермия 1 100
47,XYY; del b2/b3 3 13 Азооспермия 1 33,3
Олигоастенотератозооспермия тяжелой степени 2 66,6

Сперматологическая характеристика мужчин с нарушением репродуктивной функции, имеющих структурные мутации хромосом (2-я группа). Данная группа включала 58 пациентов с первичным бесплодием, у которых по результатам цитогенетического исследования выявлены сбалансированные структурные мутации хромосом. Эта группа составила 30 % обследованных пациентов с хромосомными аномалиями.

В спектре исследованных структурных мутаций хромосом большую часть составили сбалансированные реципрокные (преимущественно аутосомно-аутосомные) транслокации, обнаруженные у 27 (47 %) пациентов, а также робертсоновские транслокации, в основном с вовлечением хромосом 13 и 14 (кариотип 45,XY,der(13;14)(q10;q10)), выявленные у 23 (40 %) пациентов. Перицентрические инверсии определены у 4 (7 %) пациентов, из них аутосомные (хромосом 7, 18) – у 3, хромосомы Y – у 1. Комплексные хромосомные перестройки выявлены у 3 (5 %) пациентов: 46,XY,t(5;15) (р22;q32);t(6;12)(q15;q21); 46,XY,t(5;11)(q31,1;q33)t(6;18) (q25,1;р11,2), сочетание транслокации и инверсии – 46,XY,t(7;9)(q31;q34)inv(9)(q32;q34). У 1 мужчины с азооспермией обнаружена кольцевая хромосома 22 (кариотип 46,XY,r(22)(::р11→q13::)).

Спермиологическое исследование выполнено у 37пациентов со структурными мутациями хромосом (табл. 3). Различные формы патозооспермии диагностированы у 36 (97 %) пациентов: азооспермия – у 8 (21 %), криптозооспермия – у 1 (3 %), олигоастенотератозооспермия тяжелой степени – у 18 (46 %), астенотератозооспермия – у 8 (21 %). У 1 пациента с робертсоновской транслокацией (13;14) определена нормозооспермия.

Таблица 3. Сперматологическая характеристика у мужчин с нарушением репродукции, имеющих структурные мутации хромосом

Тип аномалии хромосом Число пациентов Тип патозооспермии Число пациентов
абс. % абс. %
Транслокации 33 89 Азооспермия 7 18
Олигоастенотератозооспермия 17 43,5
Астенотератозооспермия 7 18
Криптозооспермия 1 2,6
Нормозооспермия 1 2,6
Инверсии 2 5,5 Олигоастенотератозооспермия 1 2,6
Астенотератозооспермия 1 2,6
Кольцевая хромосома (22) 1 2,7 Азооспермия 1 2,6
Транслокация, инверсия 1 2,7 Астенозооспермия 1 2,6

При молекулярно-генетическом исследовании у 11 (19 %) из 58 пациентов 2-й группы обнаружено сочетание структурных мутаций хромосом с другими генетическими факторами бесплодия (микроделеции Y-хромосомы, мутации гена CFTR и «коротких» или «длинных» CАG-повторов гена AR).

У одного мужчины с робертсоновской транслокацией установлено наличие полной делеции региона AZFc (del b2/b4) Y-хромосомы (табл. 4). Частичные микроделеции региона AZFc (del b2/b3, del gr/gr) выявлены у 6 (14,3 %) пациентов (от общего числа пациентов с транслокациями) и у 1 пациента с инверсией. Сочетание структурных перестроек хромосом и мутаций или аллели 5Т гена CFTR выявлено у 3 (3,5 %) пациентов.

Таблица 4. Сочетание структурных хромосомных мутаций с генетическими нарушениями, связанными с нарушением фертильности у мужчин

Тип аномалии / генотип Число пациентов Нарушения сперматогенеза Число пациентов
абс % абс %
Робертсоновская транслокация, полная (b2/b4) делеция AZFc 1 1,6 Олигоастенотератозооспермия тяжелой степени 1 100
Робертсоновская транслокация, частичная делеция AZFc (del b2/b3) 4 6,4 Олигоастенотератозооспермия тяжелой степени 3 75
Робертсоновская транслокация, IVS8-5T вариант гена CFTR 2 3,2 Астенозооспермия 2 100
Реципрокная транслокация, частичная делеция AZFc (del b2/b3) 2 3,2 Олигоастенотератозооспермия тяжелой степени 2 100
Реципрокная транслокация, CFTR-мутация N1303K/- 1 1,6 Азооспермия 1 100
Инверсия, частичная делеция AZFc (del b2/b3) 1 1,6 Не исследовали

Таким образом, у пациентов с сочетанием хромосомных и генных мутаций выявлены преимущественно тяжелые формы патозооспермии (азооспермия, олигозооспермия тяжелой степени).

Сперматологическая характеристика мужчин с нарушением репродуктивной функции, имеющих нормальный кариотип (группа 3-я). К данной группе отнесены пациенты, обратившиеся поповоду первичного бесплодия, укоторых в ходе цитогенетического исследования не обнаружено хромосомных аномалий. В нее вошли 200 мужчин c различными формами патозооспермии или нарушения сперматогенеза и нормальным мужским кариотипом (46,XY).

В структуре спермиологических заключений у 186 (93 %) пациентов 3-й группы отмечена азооспермия, криптозооспермия или олигозооспермия тяжелой степени, у 13 (6,5 %) – астено-/тератозооспермия или олигозооспермия умеренной степени. У 1 пациента выявлена нормозооспермия (см. рисунок).

Спектр спермиологических нарушений у мужчин 3-й группы

При молекулярно-генетическом исследовании у 56 (28,7 %) пациентов 3-й группы диагностированы различные генетические факторы мужского бесплодия (табл. 5). Полные делеции одного AZF-региона (a, b или c) обнаружены у 19 (34 %) мужчин 3-й группы. У 5 (9 %) пациентов выявлены делеции AZFb+с, в том числе у 1 – в сочетании вариантом IVS8-5T гена CFTR в гетерозиготном состоянии (см. табл. 5).

Таблица 5. Типы и частота генетических аномалий у пациентов с нормальным мужским кариотипом (3-я группа)

Тип аномалии / генотип Число пациентов Тип патозооспермии Число пациентов
абс % абс %
Делеция AZFb+c 5 9 Азооспермия 5 100
Делеция AZFa 1 1,8 Азооспермия 1 100
Делеция AZFb 4 3,6 Азооспермия 2 50
Криптозооспермия 2 50
Полная делеция AZFc 14 2,6 Азооспермия 11 79
Олигоастенотератозооспермия 2 14
Криптозооспермия 1 7
Частичная делеция AZFc del b2/b3 12 21 Азооспермия 7 58
Олигоастенотератозооспермия 5 42
del gr/gr 8 14,3 Азооспермия 5 63
Олигоастенотератозооспермия 3 38
Мутация CFTR (F508del) 1 1,8 Азооспермия 1 100
IVS8-5T(5Т/7Т) 3 5,4 Олигоастенотератозооспермия 3 100
Полная делеция AZFb+c, IVS8-5T (5T/7T) 1 1,8 Азооспермия 1 100
Частичная делеция AZFc (del b2/b3; del gr/gr), IVS8-5T(5T/7T) 2 3,6 Азооспермия 1 50
Олигоастенотератозооспермия 1 50
Частичная делеция AZFc (del b2/b3), CAG = 30 Partial AZFc deletion (del b2/b3), CAG = 30 1 1,8 Олигоастенотератозооспермия 1 100
IVS8-5T(5Т/7Т) CAG = 33 2 3,6 Азооспермия 1 50
CAG = 28 Олигоастенотератозооспермия 1 50
Мутация CFTR, IVS8-5T F508del/5Т 1 3,6 Азооспермия 1 100
2184insA/5T 1 Азооспермия 1 100

Таблица 6. Формы патозооспермии у мужчин с сочетанием различных генетических факторов мужского бесплодия (AZF, CFTR, AR)

Тип патозооспермии Вид сочетания генетических факторов
Числовые хромосомные аномалии, генные варианты, n = 21 Структурные хромосомные аномалии, генные варианты, n = 10 Нормальный кариотип, генные варианты, n = 56
абс. % абс. % абс. %
Азооспермия 19 90,5 1 10 37 66
Олигоастенотератозооспермия тяжелой степени 2 9,5 6 60 16 28,6
Астенотератозооспермия 1 10 3 5,4
Астенозооспермия 2 20

У 1 (1,8 %) пациента диагностирована мутация F508del гена CFTR. Мутации в гене CFTR в компаундгетерозиготе с вариантом IVS8-5T выявлены у 2 (3,6 %) пациентов с обструктивной формой азооспермии (генотипы 2184insA/N,5T/7T и F508del/N,5T/9T). У 2 мужчин обнаружено сочетание варианта IVS8-5T гена CFTR и увеличенное количество CAG-повторов гена AR (генотипы CFTR 5T/7T; AR CAGn = 28 и CFTR 5Т/7Т; CAGn = 33).

Как можно видеть из табл. 5, среди генетических факторов (AZF, CFTR и AR) чаще всего отмечены микроделеции региона AZFc, выявленные у 23 (41 %) пациентов 3-й группы. У 3 мужчин определены частичные делеции региона AZFc (del b2/b3), которые сочетались у одного пациента с повышенным (n = 30) количеством CAG-повторов гена AR, а у 2 – с вариантом IVS8-5T гена CFTR в гетерозиготном состоянии. Сочетание нескольких различных генетических факторов, связанных с нарушением фертильности у мужчин, выявлено у 6 (10,7 %) пациентов 3-й группы.

В выявленных случаях сочетания генетических факторов мужского бесплодия во всех 3 группах преобладали тяжелые формы патозооспермии (азооспермия, олигоастенотератозооспермия тяжелой степени), которые выявлены соответственно у 100, 70 и 94,5 % пациентов 1, 2 и 3-й групп (табл. 6). У мужчин с сочетанием генетических факторов бесплодия не обнаружено изолированной тератозооспермии и нормозооспермии.

В данном исследовании впервые изучены сочетания различных генетических факторов, связанных с нарушением мужской фертильности (AZF, CFTR, AR), у мужчин с нормальным кариотипом и с хромосомными мутациями (с числовыми и структурными аномалиями).

В группе пациентов с числовыми аномалиями хромосом встречали частичные AZF-делеции, изменение количества CAG-повторов гена AR и не встречали полные делеции региона AZF, мутации в гене CFTR. У пациентов со структурными перестройками хромосом выявлены частичные AZF-делеции, мутации в гене CFTR, но не обнаружены «короткие» и «длинные» CAG-повторы гена AR. Это может указывать на то, что наличие у пациента 2 генетических причин мужского бесплодия (например, хромосомной мутации и полной делеции региона AZF) является случайным, встречается редко, и, очевидно, эти генетические факторы не зависят друг от друга.

У мужчин с бесплодием, не имеющих аномалий кариотипа, частота других исследованных генетических факторов, нарушающих сперматогенез (AZF, CFTR и AR), примерно в 2 раза превысила совокупную частоту данных факторов в группах пациентов с числовыми и структурными аномалиями хромосом. У пациентов с нормальным кариотипом сочетания микроструктурных перестроек Y-хромосомы и генных вариантов (в генах CFTR и AR) обнаружены чаще, чем у пациентов с хромосомными аномалиями. Сочетание 2 изменений в одном и том же факторе – мутации и аллели 5Т в гене CFTR – может вызывать синдром CBAVD или обструктивную азооспермию.

Примечательно, что в структуре патозооспермии обследованных групп нами выявлено сходство.

В частности, азооспермию у мужчин с нормальным кариотипом и мужчин с хромосомными аномалиями регистрировали с одинаковой частотой – 58 %.

Наличие дополнительных генетических факторов, очевидно, существенно не влияло на тяжесть нарушения сперматогенеза у пациентов с синдромом Клайнфельтера, у которых в основном диагностирована азооспермия. У мужчин со структурными аномалиями чаще обнаруживали олигозооспермию тяжелой степени. Больше всего сочетаний генетических факторов, приводящих к тяжелым формам патозооспермии, выявлено у пациентов с нормальным кариотипом.

Наличия полной делеции AZF-региона(ов), мутаций в генах AR или CFTR достаточно для развития тяжелых генетически обусловленных форм мужского бесплодия, как правило первичного. Для данных микроделеций Y-хромосомы характерно тяжелое угнетение сперматогенеза, вплоть до синдрома наличия только клеток Сертоли и секреторной азооспермии, криптозооспермии или олигозооспермии тяжелой степени. Наличие в генотипе мутаций или аллели 5Т в гене CFTR может приводить к развитию синдрома CBAVD, проявляющегося первичным бесплодием вследствие обструктивной формы азооспермии [6]. Следует подчеркнуть, что наличие частичных микроделеций AZFc-региона, только 1 мутации или аллели 5Т гена CFTR, увеличенное или уменьшенное количество CAG-повторов в гене AR не сами по себе вызывают мужское бесплодие, а только в сочетании с другими факторами, поскольку нарушение фертильности имеет мультифакторную этиологию. Их чаще отмечают у мужчин с тяжелыми формами патозооспермии, в частности с азооспермией и олигозооспермией тяжелой степени, однако они встречаются у мужчин с различной фертильностью и показателями спермограммы [3].

Данное исследование свидетельствует, что у пациентов с бесплодием может наблюдаться сочетание 2 и более разных генетических факторов, влияющих на мужскую фертильность. Подобные сочетания генетических факторов в генотипе (в частности, микроделеций Y-хромосомы, мутаций гена CFTR и увеличенного числа CAG-повторов гена AR) могут чаще встречаться у пациентов с бесплодием. Если они выявляются в комбинации друг с другом, это производит аддитивный эффект, усиливает негативное действие каждого, утяжеляет клинические (фенотипические) проявления. Дальнейшее изучение данного вопроса очень важно как для понимания причин мужского бесплодия, выбора адекватной тактики лечения, в том числе с помощью вспомогательных репродуктивных технологий, так и для планирования профилактики генетических нарушений у потомства.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *