Меню Рубрики

Какой метод использовал карпеченко для преодоления бесплодия

1. Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путем

3. Искусственного мутагенеза

4. Внутривидовой гибридизации

Объяснение: в грибы, как и в бактерии встраивают гены выработки антибиотиков, вследствие чего они вырабатываю антибиотики в большом количестве. Правильный ответ — 3.

2. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

Объяснение: клеточная инженерия (а не генная) занимается пересадкой ядер. Правильный ответ — 1.

3. Гибриды, полученные путем отдаленной гибридизации, бесплодны, так как у них

1. Невозможен процесс конъюгации в мейозе

2. Нарушается процесс митотического деления

3. Проявляются рецессивные мутации

4. Доминируют летальные мутации

Объяснение: при скрещивании неблизкородственных гибридов не бывает таких проблем, как при скрещивании близкородственный особей, поэтому их потомство не появляется, так как конъюгации в мейозе не происходит. Правильный ответ – 1.

4. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

Объяснение: речь идет о получении полиплоидных организмов, то есть с увеличенным набором хромосом. Такой набор можно получить только при помощи искусственного мутагенеза. Правильный ответ — 4.

5. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

Объяснение: отдаленная гибридизация возможна только при получении полиплоидов. Правильный ответ – 2.

6. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

Объяснение: полиплоиды — организмы с кратно увеличенным набором хромосом: 4n, 6n, 8n и т.д. Правильный ответ — 1.

7. Индивидуальный отбор в селекции, в отличие от массового, более эффективен, так как он проводится

2. Под влиянием факторов окружающей среды

3. Под влиянием деятельности человека

Объяснение: массовый отбор идет по фенотипу (отбираем особей с нужным нам хорошо выраженным признаком), а индивидуальный — по генотипу (то есть идет среди особей с известным генотипом). Правильный ответ — 1.

8. Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко предложил метод

2. Экспериментального мутагенеза

3. Отдаленной гибридизации

4. Близкородственного скрещивания

Объяснение: полиплоидия – это кратное увеличение набора хромосом, позволяющее особям разных видов давать потомство, что создается искусственно (но существуют и природные полиплоиды, они, как правило, больше и сильнее своих сородичей). Правильный ответ – 1.

9. Явление гибридной силы, проявляющееся в повышении продуктивности и жизнеспособности организмов, называют

Объяснение: гетерозис — явление при котором при межвидовом скрещивании получаются гетерозиготные организмы. У этих организмов очень сильно проявлены гетерозиготные признаки. То есть в данном случае гетерозигота проявляется сильнее, чем гомозигота по доминантному признаку. Например, они могут быть более продуктивны и жизнеспособны. Правильный ответ — 3.

10. В селекции животных применяют метод

3. Самооплодотворения особей

4. Оценки родительских особей по потомству

Объяснение: целью селекции является выведение нового сорта или породы с полезными для человека признаками и с из большим проявлением. Такое выведение занимает много времени, так как конечной целью является получение чистой линии особей с наибольшим проявлением признака, но в начале этого пути, при скрещивании родительских особей селекционеры не могут узнать какие признаки содержатся у родителей, они могут узнать это только при выведении потомства, а может быть и даже нескольких поколений потомства данных родителей. Правильный ответ — 4.

11. Н.И. Вавилов, занимаясь исследованием особенностей наследования признаков культурных растений, обосновал закон

1. Гомологических рядов в наследственной изменчивости

2. Независимого наследования неаллельных генов

3. Доминирования гибридов первого поколения

4. Сцепленного с полом наследования

Объяснение: Н.И. Вавилов сформулировал закон гомологических рядов, который звучит следующим образом: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Правильный ответ — 1.

12. Близкородственное скрещивание в селекции животных используют для

2. Увеличения гетерозисных форм

3. Получения полиплоидных форм

4. Отбора наиболее продуктивных животных

Объяснение: в селекции скрещивают, например, курицу и петуха с большой мышечной массой для того, чтобы получилось потомство с мышечной массой тоже. Правильный ответ — 1.

13. Метод отдаленной гибридизации особей селекционеры используют для

1. Повышения плодовитости особей

2. Формирования чистых линий

3. Появления мутантных форм

4. Получения эффекта гетерозиса

Объяснение: метод отдаленной гибридизации используют для получения эффекта гетерозиса, так как при таком эффекте гетерозиготные признаки проявляются намного ярче у потомков, чем у родительских особей (наличие эффекта гетерозиса доказано, но причины до конца не выяснены). Правильный ответ — 4.

14. Какой метод используют ученые для получения комбинативной изменчивости у культурных растений?

Объяснение: комбинативная изменчивость возможна (выбирая из предложенных вариантов) только в случае гибридизации, так как комбинативная изменчивость — изменчивость, возникающая при перекомбинации родительских генов. Причинами могут быть нарушения в : кроссинговере в метафазе мейоза, расхождении хромосом в мейозе, слиянии половых клеток. Правильный ответ — 1.

15. В селекции для преодоления бесплодия отдаленных гибридов используют

3. Гетерозиготные организмы

Объяснение: межвидовой скрещивание полиплоидных организмов возможно, так и преодолевается бесплодие отдаленных гибридов. Правильный ответ — 1.

Задания для самостоятельного решения

1. При близкородственном скрещивании снижается жизнеспособность потомства вследствие

1. Проявления рецессивных мутаций

2. Возникновения доминантных мутаций

3. Увеличения доли гетерозигот

4. Сокращения числа доминантных гомозигот

2. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

3. В основе создания селекционерами чистых линий культурных растений лежит процесс

1. Сокращения доли гомозигот в потомстве

2. Сокращения доли полиплоидов в потомстве

3. Увеличения доли гетерозигот в потомстве

4. Увеличения доли гомозигот в потомстве

4. Получением гибридов на основе соединения хромосом клеток разных организмов занимается

5. Явление гибридной силы, проявляющееся а повышении продуктивности и жизнеспособности организмов, называют

6. Для получения высокого урожая картофеля его следует несколько раз в течение лета окучивать для

1. Ускорения созревания плодов

2. Сокращения численности вредителей

3. Развития придаточных корней и столонов

4. Улучшения питания корней органическими веществами

7. В селекции растений чистые линии получают путем

3. Экспериментального мутагенеза

4. Межвидовой гибридизации

8. Снижение эффекта гетерозиса в последующих поколениях обусловлено

1. Проявлением доминантных мутаций

2. Увеличением числа гетерозиготных особей

3. Увеличением числа гомозиготных особей

4. Появлением полиплоидных форм

9. Получение гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

10. В селекции животных, в отличие от селекции растений и микроорганизмов, проводят отбор

11. Что представляет собой сорт или порода?

1. Искусственную популяцию

12. В селекции животных практически не используют

2. Неродственное скрещивание

3. Родственное скрещивание

13. Полиплоидия применяется в селекции

14. Популяция растений, характеризующаяся сходными генотипом и фенотипом, полученная в результате искусственного отбора, — это

15. Индивидуальный отбор в селекции растений проводится для получения

16. В селекции явление гетерозиса объясняется

1. Кратным увеличением числа хромосом

2. Изменением генофонда сорта или породы

3. Переходом многих генов в гомозиготное состояние

4. Гетерозиготностью гибридов

17. В основе создания новых пород сельскохозяйственных животных лежит

1. Скрещивание и искусственный отбор

2. Влияние природной среды на организмы

3. Содержание их в хороших условиях

4. Соблюдение режима питания и полноценное кормление

18. Каким путем осуществляется в селекции растений выведение новых сортов?

1. Выращиванием растений на удобренных почвах

2. Вегетативным размножением с помощью отводков

3. Скрещиванием растений разных сортов с последующим отбором

4. Выращиванием растений на бедных почвах

19. Для восстановления способности к воспроизведению у гибридов при отдаленной гибридизации необходимо

1. Перевести их в полиплоидные формы

2. Размножить их вегетативно

3. Получить гетерозисные организмы

20. Чистая линия растений — это потомство

2. Одной самоопыляющейся особи

4. Двух гетерозиготных особей

21. Искусственный мутагенез наиболее часто применяется в селекции

22. Полиплоидные формы тутового шелкопряда были получены путем

1. Близкородственного скрещивания

2. Увеличения числа хромосом в генотипе потомства

4. Изменения характера питания потомства

23. Массовый отбор в селекции растений используют для

1. Оценки генотипов потомства

2. Подбора растений по фенотипу

4. Получения эффекта гетерозиса

24. Возможность предсказывать возникновение сходных признаков у родственных видов появилась с открытием закона

1. Промежуточного наследования признаков

2. Расщепления признаков у потомства

3. Гомологических рядов в наследственной изменчивости

4. Сцепленного наследования генов

25. Какой агроприем улучшает снабжение корней культурных растений кислородом?

2. Подкормка минеральными удобрениями

26. Сохранение признаков у гетерозисных гибридов растений возможно только при

2. Вегетативном размножении

3. Отдаленной гибридизации

4. Использовании метода полиплоидии

27. Полиплоидные растения получают в селекции путем

1. Искусственного мутагенеза

2. Вегетативного размножения

3. Скрещивания гетерозиготных растений

28. В соответствии с законом гомологических рядов Н.И. Вавилова сходные ряды наследственной изменчивости могут быть обнаружены у

1. Картофеля и подсолнечника

29. Выращивание тканей вне организма — метод

30. Популяция микроорганизмов, характеризующаяся сходными наследственными особенностями и определенными внешними признаками, полученная в результате искусственного отбора, — это

31. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

32. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

33. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

34. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

35. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

источник

1. Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путем

3. Искусственного мутагенеза

4. Внутривидовой гибридизации

Объяснение: в грибы, как и в бактерии встраивают гены выработки антибиотиков, вследствие чего они вырабатываю антибиотики в большом количестве. Правильный ответ — 3.

2. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

Объяснение: клеточная инженерия (а не генная) занимается пересадкой ядер. Правильный ответ — 1.

3. Гибриды, полученные путем отдаленной гибридизации, бесплодны, так как у них

1. Невозможен процесс конъюгации в мейозе

2. Нарушается процесс митотического деления

3. Проявляются рецессивные мутации

4. Доминируют летальные мутации

Объяснение: при скрещивании неблизкородственных гибридов не бывает таких проблем, как при скрещивании близкородственный особей, поэтому их потомство не появляется, так как конъюгации в мейозе не происходит. Правильный ответ – 1.

4. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

Объяснение: речь идет о получении полиплоидных организмов, то есть с увеличенным набором хромосом. Такой набор можно получить только при помощи искусственного мутагенеза. Правильный ответ — 4.

5. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

Объяснение: отдаленная гибридизация возможна только при получении полиплоидов. Правильный ответ – 2.

6. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

Объяснение: полиплоиды — организмы с кратно увеличенным набором хромосом: 4n, 6n, 8n и т.д. Правильный ответ — 1.

7. Индивидуальный отбор в селекции, в отличие от массового, более эффективен, так как он проводится

2. Под влиянием факторов окружающей среды

3. Под влиянием деятельности человека

Объяснение: массовый отбор идет по фенотипу (отбираем особей с нужным нам хорошо выраженным признаком), а индивидуальный — по генотипу (то есть идет среди особей с известным генотипом). Правильный ответ — 1.

8. Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко предложил метод

2. Экспериментального мутагенеза

3. Отдаленной гибридизации

4. Близкородственного скрещивания

Объяснение: полиплоидия – это кратное увеличение набора хромосом, позволяющее особям разных видов давать потомство, что создается искусственно (но существуют и природные полиплоиды, они, как правило, больше и сильнее своих сородичей). Правильный ответ – 1.

9. Явление гибридной силы, проявляющееся в повышении продуктивности и жизнеспособности организмов, называют

Объяснение: гетерозис — явление при котором при межвидовом скрещивании получаются гетерозиготные организмы. У этих организмов очень сильно проявлены гетерозиготные признаки. То есть в данном случае гетерозигота проявляется сильнее, чем гомозигота по доминантному признаку. Например, они могут быть более продуктивны и жизнеспособны. Правильный ответ — 3.

10. В селекции животных применяют метод

3. Самооплодотворения особей

4. Оценки родительских особей по потомству

Объяснение: целью селекции является выведение нового сорта или породы с полезными для человека признаками и с из большим проявлением. Такое выведение занимает много времени, так как конечной целью является получение чистой линии особей с наибольшим проявлением признака, но в начале этого пути, при скрещивании родительских особей селекционеры не могут узнать какие признаки содержатся у родителей, они могут узнать это только при выведении потомства, а может быть и даже нескольких поколений потомства данных родителей. Правильный ответ — 4.

11. Н.И. Вавилов, занимаясь исследованием особенностей наследования признаков культурных растений, обосновал закон

1. Гомологических рядов в наследственной изменчивости

2. Независимого наследования неаллельных генов

3. Доминирования гибридов первого поколения

4. Сцепленного с полом наследования

Объяснение: Н.И. Вавилов сформулировал закон гомологических рядов, который звучит следующим образом: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Правильный ответ — 1.

12. Близкородственное скрещивание в селекции животных используют для

2. Увеличения гетерозисных форм

3. Получения полиплоидных форм

4. Отбора наиболее продуктивных животных

Объяснение: в селекции скрещивают, например, курицу и петуха с большой мышечной массой для того, чтобы получилось потомство с мышечной массой тоже. Правильный ответ — 1.

13. Метод отдаленной гибридизации особей селекционеры используют для

1. Повышения плодовитости особей

2. Формирования чистых линий

3. Появления мутантных форм

4. Получения эффекта гетерозиса

Объяснение: метод отдаленной гибридизации используют для получения эффекта гетерозиса, так как при таком эффекте гетерозиготные признаки проявляются намного ярче у потомков, чем у родительских особей (наличие эффекта гетерозиса доказано, но причины до конца не выяснены). Правильный ответ — 4.

14. Какой метод используют ученые для получения комбинативной изменчивости у культурных растений?

Объяснение: комбинативная изменчивость возможна (выбирая из предложенных вариантов) только в случае гибридизации, так как комбинативная изменчивость — изменчивость, возникающая при перекомбинации родительских генов. Причинами могут быть нарушения в : кроссинговере в метафазе мейоза, расхождении хромосом в мейозе, слиянии половых клеток. Правильный ответ — 1.

15. В селекции для преодоления бесплодия отдаленных гибридов используют

3. Гетерозиготные организмы

Читайте также:  Курение может влиять на бесплодие

Объяснение: межвидовой скрещивание полиплоидных организмов возможно, так и преодолевается бесплодие отдаленных гибридов. Правильный ответ — 1.

Задания для самостоятельного решения

1. При близкородственном скрещивании снижается жизнеспособность потомства вследствие

1. Проявления рецессивных мутаций

2. Возникновения доминантных мутаций

3. Увеличения доли гетерозигот

4. Сокращения числа доминантных гомозигот

2. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

3. В основе создания селекционерами чистых линий культурных растений лежит процесс

1. Сокращения доли гомозигот в потомстве

2. Сокращения доли полиплоидов в потомстве

3. Увеличения доли гетерозигот в потомстве

4. Увеличения доли гомозигот в потомстве

4. Получением гибридов на основе соединения хромосом клеток разных организмов занимается

5. Явление гибридной силы, проявляющееся а повышении продуктивности и жизнеспособности организмов, называют

6. Для получения высокого урожая картофеля его следует несколько раз в течение лета окучивать для

1. Ускорения созревания плодов

2. Сокращения численности вредителей

3. Развития придаточных корней и столонов

4. Улучшения питания корней органическими веществами

7. В селекции растений чистые линии получают путем

3. Экспериментального мутагенеза

4. Межвидовой гибридизации

8. Снижение эффекта гетерозиса в последующих поколениях обусловлено

1. Проявлением доминантных мутаций

2. Увеличением числа гетерозиготных особей

3. Увеличением числа гомозиготных особей

4. Появлением полиплоидных форм

9. Получение гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

10. В селекции животных, в отличие от селекции растений и микроорганизмов, проводят отбор

11. Что представляет собой сорт или порода?

1. Искусственную популяцию

12. В селекции животных практически не используют

2. Неродственное скрещивание

3. Родственное скрещивание

13. Полиплоидия применяется в селекции

14. Популяция растений, характеризующаяся сходными генотипом и фенотипом, полученная в результате искусственного отбора, — это

15. Индивидуальный отбор в селекции растений проводится для получения

16. В селекции явление гетерозиса объясняется

1. Кратным увеличением числа хромосом

2. Изменением генофонда сорта или породы

3. Переходом многих генов в гомозиготное состояние

4. Гетерозиготностью гибридов

17. В основе создания новых пород сельскохозяйственных животных лежит

1. Скрещивание и искусственный отбор

2. Влияние природной среды на организмы

3. Содержание их в хороших условиях

4. Соблюдение режима питания и полноценное кормление

18. Каким путем осуществляется в селекции растений выведение новых сортов?

1. Выращиванием растений на удобренных почвах

2. Вегетативным размножением с помощью отводков

3. Скрещиванием растений разных сортов с последующим отбором

4. Выращиванием растений на бедных почвах

19. Для восстановления способности к воспроизведению у гибридов при отдаленной гибридизации необходимо

1. Перевести их в полиплоидные формы

2. Размножить их вегетативно

3. Получить гетерозисные организмы

20. Чистая линия растений — это потомство

2. Одной самоопыляющейся особи

4. Двух гетерозиготных особей

21. Искусственный мутагенез наиболее часто применяется в селекции

22. Полиплоидные формы тутового шелкопряда были получены путем

1. Близкородственного скрещивания

2. Увеличения числа хромосом в генотипе потомства

4. Изменения характера питания потомства

23. Массовый отбор в селекции растений используют для

1. Оценки генотипов потомства

2. Подбора растений по фенотипу

4. Получения эффекта гетерозиса

24. Возможность предсказывать возникновение сходных признаков у родственных видов появилась с открытием закона

1. Промежуточного наследования признаков

2. Расщепления признаков у потомства

3. Гомологических рядов в наследственной изменчивости

4. Сцепленного наследования генов

25. Какой агроприем улучшает снабжение корней культурных растений кислородом?

2. Подкормка минеральными удобрениями

26. Сохранение признаков у гетерозисных гибридов растений возможно только при

2. Вегетативном размножении

3. Отдаленной гибридизации

4. Использовании метода полиплоидии

27. Полиплоидные растения получают в селекции путем

1. Искусственного мутагенеза

2. Вегетативного размножения

3. Скрещивания гетерозиготных растений

28. В соответствии с законом гомологических рядов Н.И. Вавилова сходные ряды наследственной изменчивости могут быть обнаружены у

1. Картофеля и подсолнечника

29. Выращивание тканей вне организма — метод

30. Популяция микроорганизмов, характеризующаяся сходными наследственными особенностями и определенными внешними признаками, полученная в результате искусственного отбора, — это

31. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

32. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

33. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

34. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

35. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

источник

Явление гетерозиса как наследственное выражение эффектов гибридизации было известно давно, однако его использование в селекционном процессе началось сравнительно недавно, в 1930-е гг. Открытие и понимание явления гетерозиса позволило определить новое направление селекционного процесса – создание высокопродуктивных гибридов растений и животных.

Новый период в изучении явления гетерозиса начинается в 20- е гг. XX в. У кукурузы путем самоопыления были получены

инбредные линии, отличающиеся от исходных растений пониженной продуктивностью и жизнеспособностью, т.е. сильной инбредной депрессией. Но когда чистые линии скрестили между собой, то неожиданно получили очень мощные гибриды первого поколения, значительно превосходящие по всем параметрам продуктивности как исходные линии, так и сорта, из которых путем самоопыления были получены эти линии. С этих работ и началось широкое использование гетерозиса в селекционном процессе.

Чем объясняется явление гетерозиса, т.е. мощность гибридов, с генетической точки зрения? Генетики предложили для его объяснения несколько гипотез. Наиболее распространенными являются следующие две.

Гипотеза доминирования — в ее основе лежит представление о благоприятно действующих доминантных генах в гомозиготном или

гетерозиготном состоянии. Если у скрещиваемых форм имеется всего по два доминантных благоприятно действующих гена ( AAbbCCdd х aaBBccDD ), то у гибpидa их четыре ( AaBbCcDd ), независимо от того,

в гомозиготном или гетерозиготном состоянии они находятся. Это и определяет гетерозис гибрида, т.е. его преимущества перед исходными формами.

Гипотеза сверхдоминирования — гетерозиготное состояние по одному или многим генам дает преимущество перед гомозиготными состояниями по одному или многим генам. Начиная со второго поколения гибридов, эффект гетерозиса затухает, т.к. часть генов переходит в гомозиготное состояние.

гипотеза компенсационного комплекса генов . При возникновении мутаций, сильно понижающих жизнеспособность и продуктивность, то в результате отбора у гомозигот формируется компенсационный комплекс генов, в значительной степени нейтрализующий вредное действие мутаций. Если затем такую мутантную форму скрестить с нормальной (без мутаций) и тем самым перевести мутации в гетерозиготное состояние, т.е. нейтрализовать их действие нормальным аллелем, то сложившийся по отношению к мутациям компенсационный комплекс обеспечит гетерозис.

Таким образом, несмотря на то, что генетические основы гетерозиса до конца еще не выяснены, несомненно, одно: положительную роль у гибридов играет высокая гетерозиготность, приводящая к проявлению повышенной физиологической активности.

Отдаленная гибридизация не находит широкого применения в селекции по причине бесплодности получаемых гибридов, но в некоторых случаях получение нормально размножающихся гибридов возможно. Впервые это удалось осуществить Г.Д. Карпеченко при скрещивании редьки и капусты, имеющих (в диплоидном наборе) по 18 хромосом.

Получение под воздействием колхицина аллодиплоида, состоящего из двух полных диплоидных наборов редьки и капусты, создало нормальные возможности для мейоза, поскольку каждая хромосома имела себе парную. Полученный капустно-редечный гибрид, названный рафанобрассикой, стал плодовитым. Гибрид не расщеплялся на родительские формы, так как хромосомы редьки и капусты всегда оказывались вместе.

Отдаленная гибридизация в сочетании с удвоением числа хромосом (полиплоидия) привела к восстановлению плодовитости.

Гибридизация эффективна в селекции лишь в сочетании с отбором. В селекции растений применяют как массовый, так и индивидуальный отбор.

При проведении массового отбора из большого числа особей выбирают группу растений с лучшими фенотипами, генотипы которых неизвестны. Массовый отбор проводится среди перекрестноопыляемых растений. Совместное выращивание отобранных растений способствует их свободному скрещиванию, что ведет к гетерозиготности особей. Массовый отбор проводят многократно в ряду последующих поколений, его используют, когда требуется относительно быстро улучшить тот или иной сорт. Но наличие модификационной изменчивости снижает ценность сортов, выведенных массовым отбором.

Индивидуальный отбор в селекции растений используют как способ сохранения для размножения лучших растений. Их выращивают изолированно друг от друга с целью выявления у потомства ценных признаков через сравнение с исходными формами и между собой.

Использование в селекции растений соматических мутаций

Использование соматических мутаций применимо для селекции вегетативно размножающихся растений. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию или сохранить и размножить любую гетерозиготную форму, обладающую хозяйственно полезными признаками. Например, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово- ягодных культур. При половом размножении свойства сортов, состоящих из гетерозиготных особей, не сохраняются, и происходит их расщепление.

Естественный отбор в селекции играет определяющую роль. На любое растение в течение всей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному, водному режиму. Поэтому благодаря естественному отбору у особей формируются приспособления к среде обитания. Не может быть культурных растений, одинаково продуктивных в любой местности. Под влиянием естественного отбора происходит районирование сортов.

источник

В настоящее время в селекции растений широко применяется межвидовая, или отдаленая гибридизация. Однако при разработке этого метода ученые столкнулись с очень серьезной проблемой – стерильностью гибридов нарушения у них мейоза.

Решить эту задачу удалось советскому генетику Георгию Дмитриевичу Карпеченко. В 1928 г. он впервые искусственным путем получил полиплоидное растение – плодовитый гибрид редьки (Raphanus sativus) и капусты (Brassica oleracca).

Капуста и редька относятся к семейству крестоцветных, однако принадлежат к разным родам. Тем не менее, перенеся пыльцу с пыльников одного растения на рыльце пестика другого можно получить межвидовой гибрид. Поскольку как капуста, так и редька имеют по 9 пар хромосом = 18), клетки гибридных растений также содержат 18 хромосом: 9 от редьки и 9 от капусты. Однако полученный межвидовой гибрид оказался неплодовитым. Его стерильность была вызвана нарушением конъюгации хромосом в мейозе, поскольку хромосомы капусты (B) не являются аналогами хромосом редьки (R). Это представляло серьезную трудность, поскольку не позволяло получить пыльцу и семенные зачатки, из которых после оплодотворения должны были развиваться семена гибридных растений.

Однако в гаметогенезе родительских видов могут происходить нарушения, ведущие к образованию жизнеспособные семязачатков и пыльцевых зерен с различным содержанием хромосом – Такие нарушения могут происходить спонтанно, а могут быть вызваны искусственно. Г. Д. Карпеченко обработал часть проростков неплодовитого гибрида алкалоидом колхицином. Сам по себе колхицин не вызывает мутаций, однако нарушает процесс образования веретена деления. В результате в клетках меристемы, из которых в дальнейшем развивались цветки (то есть в конечном итоге гаметы), произошло удвоение хромосом. Таким ообразом, каждая клетка меристемы содержала два диплоидных набора хромосом (RRBB) – редьки (RR) и капусты (BB).

Это привело к тому, что в образующихся гаметах (RB) оказывалось по 18 хромосом – 9 редечных и 9 капустных. При их слиянии получались полиплоидные растения содержащие в соматических клетках по 36 хромосом. Благодаря этому, мейоз у таких гибридных растений проходил без нарушений, поскольку хромосомы капусты конъюгировали между собой, а хромосомы редки – между собой. Именно это обстоятельство позволило преодолеть стерильность гибридных растений. Более того, полученный межвидовой гибрид не расщеплялся на родительские формы, поскольку хромосомы редьки и капусты всегда оказывались вместе.

Полученное аллотетраплоидное растение (RRBB) получило название гибрида (Raphanobrassica) и не было похоже на исходные виды. Его стручки состояли из двух половинок, одна из которых напоминала стручок редьки, а вторая – капусты. К сожалению, хозяйственного значения полученный гибрид не имел, поскольку его ботва напоминала ботву редьки, а корни походили на капустные.

Не смотря на это, опыт Г. Д. Карпеченко имел огромное теоретическое и практическое значение. По сути, это был первые случай конструирования нового генома. В конце 70 гг. ХХ века работы подобные исследования привели к выделению особого направления биологии – генной инженерии.

источник

Естественный отбор

Искусственный отбор

Исходный материал для отбора

Индивидуальные признаки организма

Индивидуальные признаки организма

Путь благоприятных изменений

Отбираются, становятся производительными

Остаются, накапливаются, передаются по наследству

Путь неблагоприятных изменений

Отбираются, бракуются, уничтожаются

Уничтожаются в борьбе за существование

Творческий – направленное накопление признаков на пользу человеку

Творческий – отбор приспособительных признаков на пользу особи, популяции, вида, приводящий к возникновению новых форм

Новые сорта растений, породы животных, штаммы микроорганизмов

Массовый, индивидуальный, бессознательный, методический

Движущий, стабилизирующий, дестабилизирующий, дизруптивный, половой

Оборудование: таблицы по общей биологии, иллюстрирующие многообразие пород и сортов, основные методы и достижения селекции растений.

1. Ч.Дарвин о причинах многообразия пород и сортов.
2. Формы искусственного отбора и их характеристика.
3. Творческая роль искусственного отбора.

№1. Почему породу или сорт можно считать рукотворной популяцией, т.е. популяцией, созданной волей и усилиями людей?

№2. Покажите на примерах влияние отбора на направления породо- и сортообразования.

№3. Почему массовый отбор применяется для перекрестноопыляемых растений? Дает ли массовый отбор генетически однородный материал? Почему при массовом отборе необходим повторный отбор?

В селекции необходимо учитывать следующие особенности биологии растений:

– высокая плодовитость и многочисленность потомства;
– наличие самоопыляемых видов;
– способность размножаться вегетативными органами;
– возможность искусственного получения мутантных форм.

Эти особенности растений определяют выбор методов селекции.

Основными методами селекции растений служат гибридизация и отбор. Обычно эти методы используют совместно. Гибридизация повышает разнообразие материала, с которым работает селекционер. Но сама по себе, чаще всего, она не может привести к целенаправленному изменению признаков у организмов, т.е. скрещивания без искусственного отбора являются малоэффективными. Скрещиванию предшествует тщательный отбор родительских пар. Для успешного поиска, подбора и использования исходного материала большое значение имеют учение Н.И. Вавилова о центрах происхождения культурных растений, его закон гомологических рядов в наследственной изменчивости, эколого-географические принципы систематики растений, а также созданная Н.И. Вавиловым, его последователями и учениками коллекция сельскохозяйственных растений.

Гибридизация может осуществляться по разным схемам. Различают скрещивания простые (парные) и сложные (ступенчатые, возвратные, или беккроссы).

Простым, или парным, называется скрещивание между двумя родительскими формами, производимое однократно. Разновидностью их являются так называемые взаимные (реципрокные) скрещивания. Напомним, что их суть состоит в том, что проводятся два скрещивания, причем отцовская форма первого скрещивания используется во втором скрещивании в качестве материнской, а материнская – соответственно в качестве отцовской. Применяются такие скрещивания в двух случаях: когда развитие наиболее ценного признака обусловлено цитоплазматической наследственностью (например, морозостойкость у некоторых сортов озимой пшеницы) или когда завязываемость семян у гибридов зависит от того, в качестве материнской или отцовской формы берется тот или иной сорт. Реципрокные скрещивания показывают, что иногда влияние цитоплазмы материнского сорта оказывается весьма существенным.
Так, в НИИ масличных культур им. В.С. Пустовойта (г. Краснодар) в результате реципрокных скрещиваний сортов подсолнечника 3519 и 6540 были получены межсортовые гибриды, которые значительно (в 2,5 раза) различались по степени поражения заразихой в зависимости от того, какой сорт был взят в качестве материнской, а какой – в качестве отцовской формы. Естественно, в селекционный процесс включили гибриды с большей устойчивостью к заразихе.

Сложными называют скрещивания, в которых используют более двух родительских форм или применяют повторное скрещивание гибридного потомства с одним из родителей. Различают ступенчатые и возвратные сложные скрещивания.
Сложная ступенчатая гибридизация – это система последовательных скрещиваний получаемых гибридов с новыми формами, а также гибридов между собой. Таким путем можно собрать в одном сорте лучшие качества многих исходных форм. Этот метод был впервые разработан и успешно применен известным советским селекционером А.П. Шехурдиным при создании сортов мягкой яровой пшеницы Лютесценс 53/12, Альбидум 43, Альбидум 24, Стекловидная, Саратовская 210, Саратовская 29 и др., а также ряда сортов твердой яровой пшеницы.
При возвратных скрещиваниях полученные гибриды скрещивают с родительской формой, признак которой хотят усилить. Если такие скрещивания повторяют многократно, их называют насыщающими, или поглотительными (беккросы). При этом гибрид насыщается генетическим материалом одного из родителей, а генетический материал другого родителя вытесняется (поглощается), и в геноме гибрида остается один или несколько генов, ответственных за какой-то ценный признак, например засухоустойчивость или устойчивость к одной из болезней. Как правило, в качестве доноров таких признаков используют местные дикорастущие формы, которые чаще всего низкопродуктивны, поэтому селекционерам и приходится прибегать к беккроссам.

В селекции растений находят применение следующие виды скрещиваний.

Инбридинг, или близкородственное скрещивание, используют как один из этапов повышения урожайности. Для этого проводят самоопыление перекрестноопыляемых растений, что ведет к повышению гомозиготности. Через 3–4 поколения возникают так называемые чистые линии – генетически однородное потомство, полученное индивидуальным отбором от одной особи или пары особей в ряду поколений. Многие аномальные признаки являются рецессивными. В чистых линиях они проявляются фенотипически. Это приводит к неблагоприятному эффекту, снижению жизнеспособности организмов, получившему название инбредная депрессия. Но, несмотря на неблагоприятное влияние самоопыления у перекрестноопыляемых растений, его часто и успешно применяют в селекции для получения чистых линий. Они необходимы для наследственного закрепления желательных, ценных признаков, а также для проведения межлинейного скрещивания. У самоопыляющихся растений не происходит накопления неблагоприятных рецессивных мутаций, т.к. они быстро переходят в гомозиготное состояние и устраняются естественным отбором.

Межлинейное скрещивание – перекрестное опыление между разными самоопыляющимися линиями, в результате которого в ряде случаев появляются высокоурожайные межлинейные гибриды. Например, для получения межлинейных гибридов кукурузы срывают метелки с выбранных растений и, когда появляются рыльца пестиков, опыляют их пыльцой этого же растения. Чтобы не произошло опыление пыльцой других растений, соцветия закрывают бумажными изоляторами. Так получают несколько чистых линий на протяжении ряда лет, а затем скрещивают чистые линии между собой и подбирают такие, потомство которых дает максимальную прибавку урожая.

Межсортовое скрещивание – скрещивание растений разных сортов между собой с целью проявления у гибридов комбинативной изменчивости. Это вид скрещивания наиболее распространен в селекции и лежит в основе получения многих высокоурожайных сортов. Его применяют и в отношении самоопыляемых видов, например пшеницы. У цветков растения одного сорта пшеницы удаляют пыльники, рядом в банке с водой ставится растение другого сорта, и оба растения накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Отдаленная гибридизация – скрещивание растений разных видов, а иногда и родов, способствующее получению новых форм. Обычно скрещивание происходит в пределах вида. Но иногда возможно получение гибридов от скрещивания растений разных видов одного рода и даже разных родов. Так, существуют гибриды ржи и пшеницы, пшеницы и дикого злака эгилопс. Однако отдаленные гибриды обычно бесплодны. Основные причины бесплодия:

– у отдаленных гибридов обычно невозможен нормальный ход созревания половых клеток;
– хромосомы обоих родительских видов растений настолько несхожи между собой, что они оказываются неспособными конъюгировать, в результате чего не происходит нормальной редукции их числа, нарушается процесс мейоза.

Эти нарушения оказываются еще более значительными, когда скрещивающиеся виды отличаются по числу хромосом (например, диплоидное число хромосом ржи 14, мягкой пшеницы – 42). Существует немало культурных растений, созданных в результате отдаленной гибридизации. Например, в результате многолетних работ академика Н.В. Цицина и его сотрудников получены ценные сорта зерновых на основе гибридизации пшеницы с многолетним сорным растением пыреем. В результате гибридизации пшеницы с рожью (эти гибриды обычно бесплодны) было получено новое культурное растение, названное тритикале (лат. triticum – пшеница, secale – рожь). Это растение очень перспективно как кормовая и зерновая культура, дающая высокие урожаи и стойкая к неблагоприятным воздействиям внешней среды.

Проявление гетерозиса по продуктивности у гибрида (в центре), полученного от скрещивания двух различных линий кукурузы (по краям)

Еще в середине XVIII в. русский академик И.Кельрейтер обратил внимание на то, что в отдельных случаях при скрещивании растений гибриды первого поколения значительно мощнее родительских форм. Затем Ч.Дарвин сделал заключение, что гибридизация во многих случаях сопровождается более мощным развитием гибридных организмов. Более высокая жизнеспособность, продуктивность гибридов первого поколения по сравнению со скрещиваемыми родительскими формами получила название гетерозис. Гетерозис может возникать при скрещивании пород у животных, сортов и чистых линий у растений. Так, межсортовой гибрид Грушевской и Днепропетровской кукурузы дает 8–9% прибавки урожая, а межлинейный гибрид двух самоопыляемых линий этих же сортов – 25–30% прибавки к урожаю. Известны случаи гетерозиса и при отдаленных скрещиваниях видов и родов растений и животных.

Таким образом, явление гетерозиса как наследственное выражение эффектов гибридизации было известно давно. Однако его использование в селекционном процессе началось сравнительно недавно, в 1930-е гг. Открытие и понимание явления гетерозиса позволило определить новое направление селекционного процесса – создание высокопродуктивных гибридов растений и животных.

Новый период в изучении явления гетерозиса начинается в 20-е гг. XX в. с работ американских генетиков Дж.Шелла, Е.Иста, Р.Хелла, Д.Джонса. В результате проведенных ими работ у кукурузы путем самоопыления были получены инбредные линии, отличающиеся от исходных растений пониженной продуктивностью и жизнеспособностью, т.е. сильной инбредной депрессией. Но когда Шелл скрестил между собой чистые линии, то неожиданно для себя получил очень мощные гибриды первого поколения, значительно превосходящие по всем параметрам продуктивности как исходные линии, так и сорта, из которых путем самоопыления были получены эти линии. С этих работ и началось широкое использование гетерозиса в селекционном процессе.

Чем объясняется явление гетерозиса, т.е. мощность гибридов, с генетической точки зрения? Генетики предложили для его объяснения несколько гипотез. Наиболее распространенными являются следующие две.

Гипотеза доминирования разработана американским генетиком Д.Джонсом. В ее основе лежит представление о благоприятно действующих доминантных генах в гомозиготном или гетерозиготном состоянии. Если у скрещиваемых форм имеется всего по два доминантных благоприятно действующих гена (AAbbCCdd х aaBBccDD), то у гибpидa их четыре (AaBbCcDd), независимо от того, в гомозиготном или гетерозиготном состоянии они находятся. Это, по мнению сторонников этой гипотезы, и определяет гетерозис гибрида, т.е. его преимущества перед исходными формами.

Гипотеза сверхдоминирования предложена американскими генетиками Дж.Шеллом и Е.Истом. В ее основе лежит признание того, что гетерозиготное состояние по одному или многим генам дает преимущество перед гомозиготными состояниями по одному или многим генам. Схема, иллюстрирующая гипотезу сверхдоминирования по однoмy гену, довольно проста. Она свидетельствует о том, что гетерозиготное состояние по гену Аа имеет преимущества в синтезе контролируемого геном продукта перед гомозиготами по аллелям этого гена. Начиная со второго поколения гибридов, эффект гетерозиса затухает, т.к. часть генов переходит в гомозиготное состояние:

Имеется и ряд других гипотез гетерозиса. Наиболее интересную из них, гипотезу компенсационного комплекса генов, предложил отечественный генетик В.А. Струнников. Ее суть сводится к следующему. Пусть возникли мутации, сильно понижающие жизнеспособность и продуктивность. В результате отбора у гомозигот формируется компенсационный комплекс генов, в значительной степени нейтрализующий вредное действие мутаций. Если затем такую мутантную форму скрестить с нормальной (без мутаций) и тем самым перевести мутации в гетерозиготное состояние, т.е. нейтрализовать их действие нормальным аллелем, то сложившийся по отношению к мутациям компенсационный комплекс обеспечит гетерозис.

Таким образом, несмотря на то, что генетические основы гетерозиса до конца еще не выяснены, несомненно одно: положительную роль у гибридов играет высокая гетерозиготность, приводящая к проявлению повышенной физиологической активности.

Отдаленная гибридизация не находит широкого применения в селекции по причине бесплодности получаемых гибридов. Одним из выдающихся достижений современной генетики и селекции явилась разработка способа преодоления бесплодия межвидовых гибридов, приводящего в некоторых случаях к получению нормально размножающихся гибридов. Впервые это удалось осуществить в 1922–1924 гг. русскому генетику, ученику Н.И. Вавилова, Георгию Дмитриевичу Карпеченко (1899–1942) при скрещивании редьки и капусты. Оба эти вида имеют (в диплоидном наборе) по 18 хромосом. Соответственно их гаметы несут по 9 хромосом (гаплоидный набор). Гибрид имеет 18 хромосом, но он совершенно бесплоден, т.к. «редечные» и «капустные» хромосомы в мейозе не конъюгируют друг с другом.

Г.Д. Карпеченко действием колхицина удвоил число хромосом гибрида. В результате в гибридном организме оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза, т.к. каждая хромосома имела себе парную. «Капустные» хромосомы конъюгировали с «капустными», а «редечные» – с «редечными». Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоиды. В зиготе вновь оказалось 36 хромосом.

Таким образом, полученный капустно-редечный гибрид, названный рафанобрассикой, стал плодовитым. Гибрид не расщеплялся на родительские формы, т.к. хромосомы редьки и капусты всегда оказывались вместе. Это созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки. Отдаленная гибридизация в сочетании с удвоением числа хромосом (полиплоидия) привела к восстановлению плодовитости.

Г.Д. Карпеченко удалось впервые четко продемонстрировать взаимосвязь отдаленной гибридизации и полиплоидии в получении плодовитых форм. Это имеет огромное значение как для эволюции, так и для селекции.

Использование соматических мутаций применимо для селекции вегетативно размножающихся растений. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию или сохранить и размножить любую гетерозиготную форму, обладающую хозяйственно полезными признаками. Например, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур. При половом размножении свойства сортов, состоящих из гетерозиготных особей, не сохраняются, и происходит их расщепление.

Как уже было нами сказано, гибридизация эффективна в селекции лишь в сочетании с отбором. В селекции растений применяют как массовый, так и индивидуальный отбор.

При проведении массового отбора из большого числа особей выбирают группу растений с лучшими фенотипами, генотипы которых неизвестны. Массовый отбор проводится среди перекрестноопыляемых растений. Совместное выращивание отобранных растений способствует их свободному скрещиванию, что ведет к гетерозиготности особей. Массовый отбор проводят многократно в ряду последующих поколений. К нему прибегают в том случае, когда требуется относительно быстро улучшить тот или иной сорт. Но наличие модификационной изменчивости снижает ценность сортов, выведенных массовым отбором.

Индивидуальный отбор в селекции растений используют как способ сохранения для размножения лучших растений. Их выращивают изолированно друг от друга с целью выявления у потомства ценных признаков через сравнение с исходными формами и между собой. Как нам уже известно, чаще всего объектом индивидуального отбора выступают самоопыляющиеся растения, и его результатом являются чистые линии.

Естественный отбор в селекции играет определяющую роль. На любое растение в течение всей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному, водному режиму. Поэтому благодаря естественному отбору у особей формируются приспособления к среде обитания. Не может быть культурных растений, одинаково продуктивных в любой местности. Под влиянием естественного отбора происходит районирование сортов.

Индуцированный мутагенез основан на воздействии различных излучений и химических мутагенов на организм для получения мутаций. Мутагены позволяют получить широкий спектр разнообразных мутаций. Из 1 тыс. искусственно полученных мутаций 1–2 тыс. оказываются полезными. Но в этом случае необходим жесткий индивидуальный отбор мутантных форм и дальнейшая работа с ними.

Методы мутагенеза успешно применяют в селекции растений. Сейчас в мире создано более 1 тыс. сортов, ведущих родословную от отдельных мутантных растений, полученных в результате искусственного мутагенеза. Известный сорт яровой пшеницы Новосибирская 67 был получен в Институте цитологии и генетики СО РАН после обработки семян исходного материала сорта Новосибирская 7 рентгеновскими лучами. Этот сорт обладает короткой и прочной соломиной, что предохраняет растения от полегания в период уборки урожая.

В селекции растений находит широкое применение и метод получения полиплоидных форм. Полиплоидия является разновидностью геномной мутации и заключается в кратном по сравнению с гаплоидным увеличении набора хромосом. Полиплоидные формы можно получить, обрабатывая колхицином семена в период их прорастания.

Кратное увеличение числа хромосом сопровождается возрастанием массы семян и плодов, что ведет к повышению урожайности сельскохозяйственных растений. О роли метода получения полиплоидов в селекции растений красноречиво сказал академик П.М. Жуковский: «Человечество питается и одевается преимущественно продуктами полиплоидии». В России широко распространены экспериментально полученные полиплоидные сорта картофеля, пшеницы, сахарной свеклы, гречихи и других культурных растений.

Обобщающая беседа по ходу изучения нового материала.

Изучить параграф учебника (особенности биологии растений, учитываемые в селекции, основные методы селекции растений и их характеристика).

источник

В своей классической работе «Селекция как наука» Н. И. Вавилов писал: «Эволюционное учение пронизывает всю науку о селекции. Селекция по существу есть вмешательство человека в формообразование животных и растений; другими словами, селекция представляет собой эволюцию, направляемую волей человека».

Действительно, учение Ч. Дарвина возникло в равной степени на основе обобщения как всего научного материала, накопленного к тому времени самыми разными разделами биологии, так и огромного селекционного опыта человечества. В свою очередь дарвинизм стал единой теорией, объясняющей совокупность биологических явлений и в то же время составляющей научную базу целостной системы принципов и методов селекции животных растений, а затем и микроорганизмов. Это связано прежде всего с тем, что генетические механизмы формообразования не могли не быть едиными для всех организмов, независимо от того, живут ли они в природных условиях или в условиях культуры.

Какое выдающееся значение для селекционной практики имеет познание закономерностей формообразовательного процесса, убедительно показали работы Георгия Дмитриевича Карпеченко — одного из ближайших сотрудников Н. И. Вавилова. За свою короткую жизнь он сумел сделать так много, что его имя по заслугам вошло в историю генетики. С самого начала научной деятельности его внимание привлекла труднейшая проблема отдаленной гибридизации растений. Он поставил при этом своей задачей не только выяснить эволюционное и селекционное значение отдаленных гибридов, но и познать механизмы, управляющие цитогенетическими процессами при отдаленной гибридизации и определяющие ее биологическую и хозяйственную эффективность. Эта глава генетики наряду с тесно связанной с ней проблемой полиплбидии и была излюбленной областью работы Г. Д. Карпеченко. Именно в этом разделе науки он сразу же стал общепризнанным авторитетом мирового ранга, а его исследования на долгие годы вошли во все генетические сводки и учебники.

Блестящему успеху молодого ученого способствовало сочетание ряда благоприятных обстоятельств. Будучи человеком на редкость одаренным от природы, он прошел великолепную школу в тогдашней «Тимирязевке», а очень скоро, после ее окончания, был привлечен Н. И. Вавиловым к строительству самого крупного центра советской растениеводческой науки, создание которого теснейшим образом связано с именем В. И. Ленина. Страна, только что вышедшая из тяжелой разрухи, предоставила коллективу ученых, сгруппировавшемуся вокруг Н. И. Вавилова, оптимальные по тем временам условия для плодотворной работы. Доверие и забота народа были с честью оправданы этим коллективом, видное место в котором занимал Г. Д. Карнеченко.

Георгий Дмитриевич родился 21 апреля (3 мая) 1899 г. в г. Вельске Вологодской губернии в семье землемера. С детства он страстно увлекался естествознанием и в 1917 г., окончив Вологодскую гимназию, поступил на естественное отделение Пермского университета, откуда в 1918 г. перевелся на факультет растениеводства Московской сельскохозяйственной (в дальнейшем Тимирязевской) академии. Будучи студентом, Г. Д. Карпеченко совмещал занятия с работой. Одно время он был помощником агронома, затем преподавал естествознание в Вельской средней школе и в Вологодском пролетарском университете. После окончания в 1922 г. Академии его оставили «для подготовки к научной деятельности» при кафедре селекции сельскохозяйственных растений. Георгий Дмитриевич всегда с глубокой благодарностью и теплотой вспоминал своих ближайших учителей по «Тимирязевке» — профессора С. И. Жегалова, одного из пионеров научной селекции в нашей стране, А. Г. Николаеву — первую русскую женщину, занимавшуюся цитологией культурных растений. Под их руководством начиналась работа молодого ученого и были осуществлены первые кариологические исследования, посвященные видам крестоцветных, а также клевера и фасоли.

К «Тимирязевскому» периоду жизни Георгия Дмитриевича относится и начало тех замечательных исследований по отдаленной гибридизации растений, которые доставили ему мировую известность. В качестве объектов им были выбраны два вида семейства крастоцветных, принадлежащие разным родам,— редька (Raphanus sativus) и капуста (Brassica oleracea). Работы, начатые в 1922 г. в Петровском-Разумовском на селекционной станции Тимирязевской академии, во главе которой стоял С. И. Жегалов, были в 1925 г. перенесены в Детское Село (ныне г. Пушкин), где по инициативе Н. И. Вавилова и под руководством Г. Д. Карпеченко была создана лаборатория генетики Всесоюзного института прикладной ботаники и новых культур (теперь это Всесоюзный научно-исследовательский институт растениеводства им. Н. И. Вавилова). Приглашение на такой ответственный пост совсем молодого человека, которому не исполнилось еще и 26 лет,— прекрасное свидетельство смелости Н. И. Вавилова, его веры в молодежь. Впрочем, и самому Николаю Ивановичу не было еще тогда 40 лет.

С этого времени жизнь и деятельность обоих выдающихся ученых были теснейшим образом связаны между собой. Г. Д. Карпеченко со всей энергией принимается за формирование новой лаборатории и привлекает к работе в ней большую группу талантливых генетиков, многие из которых приобрели впоследствии очень широкую известность. Среди них надо упомянуть прежде всего Т. В. Асееву, Е. И. Барулину, А. С. Каспарян, А. Н. Луткова (бывшего все время заместителем Георгия Дмитриевича по руководству лабораторией), О. Н. Сорокину, М. И. Хаджинова, С. А. Щавинскую. В 1931 г. в лабораторию были приняты первые аспиранты, многие из которых по окончании аспирантуры остались работать в ее штате. Лаборатория Г. Д. Карпеченко стала одним из основных центров подготовки генетической молодежи в нашей стране.

Роль Г. Д. Карпеченко как воспитателя научных кадров стала еще значительнее, когда в 1932 г. он был приглашен организовать кафедру генетики растений Ленинградского университета. После безвременной кончины Ю. А. Филипченко единую кафедру генетики решено было разделить на две — ботаническую и зоологическую. Молодой заведующий кафедрой пригласил преподавать таких выдающихся ученых, как Г. А. Левитский (цитология), М. А. Розанова (экспериментальная систематика), Л. И. Говоров (селекция), Дончо Костов (частная генетика). На кафедре работали также Б. И. Васильев, бывший заместителем заведующего и ученым секретарем кафедры, М. В. Сенянинова-Корчагина, А. П. Соколовская, О. С. Стрелкова, Д. Р. Габе и др. Сам Г. Д. Карпеченко читал общий куре генетики для всех студентов факультета и так называемые «специальные главы генетики растений» — для студентов кафедры, руководил аспирантам ми и возглавлял лабораторию генетики растений Петергофского биологического института Ленинградского университета.

Наряду с руководством этими двумя коллективам Г. Д. Карпеченко был непременным активным организатором и участником всех мероприятий, осуществлявшихся Н. И. Вавиловым в области генетики. Так, в 1929 г. он был генеральным секретарем Всесоюзного съезда по генетике, селекции, семеноводству и племенному животноводству.

Съезд этот, состоявшийся в Ленинграде, явился крупным событием в развитии биологических и сельскохозяйственных наук в нашей стране. В 1932 г. Г. Д. Карпеченко был членом Президиума Всесоюзной конференции по планированию генетико-селекционных исследований на вторую пятилетку. После реорганизации ВАСХНИЛ в 1935 г. он участвовал во всех сессиях и совещаниях этой академии, посвященных вопросам генетики и селекции.

2 ноября 1934 г. по представлению Н. И. Вавилова Президиум ВАСХНИЛ присудил Г. Д. Карпеченко «за выдающиеся работы по теории межвидовой и межродовой гибридизации и за выдающиеся работы по получению плодовитых форм у межродовых гибридов» ученую степень доктора биологических наук без защиты диссертации. К званию профессора он был представлен Ленинградским университетом и утвержден в нем 28 декабря 1938 г.

Уже в 20—30-х годах заслуги Г. Д. Карпеченко перед наукой нашли широкое международное признание. С большим достоинством представлял он советскую биологию за рубежами страны. Еще в 1925 г. Георгий Дмитриевич был командирован в Финляндию, Данию, Германию и Англию и посетил почти все основные генетические учреждения Западной Европы. В 1927 г. он участвовал в работе V Международного генетического конгресса в Берлине. С октября 1929 г. по февраль 1931 г., получив международную стипендию Рокфеллеровского фонда, он работал в США у таких выдающихся ученых, как зоолог Т. Г. Морган и ботаник Э. Бэбкок. В 1932 г. его пригласили на VI Международный генетический конгресс (Итака, США) выступить на пленарном заседании с докладом по проблеме отдаленной гибридизации, а в 1934 г. он был избран вице-президентом генетической секции VI Международного ботанического конгресса (Амстердам). Перейдем к краткому анализу вклада Г. Д. Карпеченко в развитие генетики и генетических основ селекции.

Уже в упомянутых выше самых ранних кардиологических исследованиях Георгий Дмитриевич изучил два возможных типа эволюционного процесса у растений. Первый тип — преобразование хромосомного комплекса в целом (у клеверов им было установлено существование полиплоидных рядов с числом хромосом от 14 до 130) второй тип — без такого преобразования, на основе генных мутаций и структурных изменений отдельных хромосом (у всех изученных видов фасоли диплоидное число хромосом было равно 22).

Работы с капустно-редечными гибридами позволили Г. Д. Карпеченко углубленно изучить первый тип видообразования, причем в его более сложной форме, когда явления полиплоидизации сочетаются с отдаленной гибридизацией. Развивая гипотезу, высказанную известным датским генетиком О. Винге, Г. Д. Карпеченко экспериментально выяснил причины бесплодия отдаленных гибридов и изучил механизмы восстановления их плодовитости. Модельной четкости его опытов способствовало то обстоятельство, что оба родительских вида (Raphanus sativus и Brassica oleracea) имели одинаковое число хромосом (2п = 18). Соответственно то же число имел и гибрид первого поколения. Но далее было установлено, что 9 хромосом гаплоидного комплекса редьки и 9 хромосом капусты, будучи негомологичными, в мейозе гибрида не конъюгировали между собой и затем неправильно распределялись по образующимся половым клеткам. В результате возникали неполноценные нежизнеспособные гаметы с сильно варьирующим числом хромосом. В тех же относительно нередких случаях, когда все 18 (9 + 9) унивалентов не распределялись по полюсам, а включались в ядро одной половой клетки, возникали гаметы с диплоидным числом хромосом (9 редечных+9 капустных). Слияние таких двух гамет приводило к возникновению плодовитого и константного тетраплоидного гибрида с четырьмя комплексами хромосом, два из которых (18 хромосом) были редечными и два (тоже 18) — капустными. Подобная «дважды диплоидная» структура получила название амфидиплоидной. При скрещивании с родительской формой диплоидные гаметы амфидиплоида с 18 хромосомами сливались с нормальными гаплоидными гаметами родительского вида, в результате чего возникали стерильные триплоидные растения (18+9=2n-1n=3n). Таким образом, амфидиплоидный гибрид капусты и редьки, получивший название Raphanobrassica, оказался репродуктивно изолированным от своих родителей, способным размножаться только «в себе». Он представлял собой четкую модель впервые созданного человеком в эксперименте нового таксона — даже не видового, а родового ранга.

Почему же обыкновенный диплоидный 18-хромосомный гибрид (9 хромосом редьки и 9 хромосом капусты) совершенно бесплоден, а «дважды диплоидный» 36-хромо-сомный гибрид (18 хромосом редьки и 18 хромосом капусты) полностью восстанавливает плодовитость? На этот вопрос Георгий Дмитриевич дал исчерпывающий ответ. Дело в том, что 9 хромосом редьки в процессе эволюции стали настолько отличны от 9 хромосом капусты, что потеряли способность конъюгировать с ними в процессе мейоза. У амфидиплоида же присутствуют по два набора хромосом редьки и по два — капусты; следовательно, для каждой хромосомы редьки и для каждой хромосомы капусты находилась парная. Все хромосомы конъюгировали в 18 пар и правильно распределялись, давая сбалансированные диплоидные гаметы с 9 редечными и 9 капустными хромосомами.

За этой кристально ясной схемой, полученной Г. Д. Карпеченко, скрывается огромный объем работы нескольких лет. В первом поколении им было получено 19 плодовитых растений, давших свыше 800 семян. Затем, во втором поколении, было тщательным образом изучено в цитологическом и морфологическом отношениях 302 растения. Продолжалось изучение гибридов и в следующих поколениях. Хотя Raphanobrassica сама по себе не представляла хозяйственной ценности (гибрид не образовывал ни кочна, ни корнеплодов), ее получение и углубленное исследование, осуществленное Г. Д. Карпеченко, имело очень большое и генетико-теоретическое и селекционно-практическое значение. Проведенное исследование в целом являлось своего рода экспериментальной моделью гибридного возникновения новых полиплоидных таксонов в природе. В то же время оно указывало на возможные пути использования метода отдаленной гибридизации в селекции сельскохозяйственных растений. Результаты работ с редечно-капустными гибридами были опубликованы в наиболее полном виде в 1927 г. на русском языке, а в 1928 г.— на немецком. Они до сих пор являются непревзойденными по тщательности цитогенетического анализа и по четкости выводов. В дальнейших экспериментах Г. Д. Карпеченко показал, что удвоение хромосомных наборов у отдаленных гибридов и чистых видов является во многих случаях незаменимым методом увеличения их скрещиваемости и даже преодоления нескрещиваемости.

Так, например, оказалось, что Raphanobrassica, очень трудно скрещивающаяся со своими родителями, довольно легко гибридизируется с другими видами рода Brassica, не дающими гибридов ни с редькой, ни с капустой. Тетраплоидная Brassica oleracea в сто раз легче скрещивается с В. carinata и может образовывать гибриды с В. chinensis, совершенно не дающей гибридов с исходной диплоидной формой. Используя это открытие, Г. Д. Карпеченко смог в дальнейшем получить гексагеномный гибрид (с 6 наборами хромосом) Brassica oleracea X B. chinensis, имеющий 2n = 56 и оказавшийся константным и плодовитым.

Когда Н. И. Вавилов задумал издание трехтомного руководства «Теоретические основы селекции» растений», аналогов которого в то время не было в мировой литературе, он совершенно естественно поручил IV Д. Карпеченко написать два раздела этого труда: «Теория отдаленной гибридизации» и «Экспериментальная полиплоидия и гаплоидия».

«Теория отдаленной гибридизации», вышедшая также в виде монографии, представляет исключительную ценность и до настоящего времени. Г. Д. Карпеченко проводит в ней мысль, что с генетической точки зрения чрезвычайно трудно разделить гибриды на внутривидовые, межвидовые и межродовые, поскольку генетическая дивергенция не всегда соответствует морфологической, на которой основывают свои построения систематики. Поэтому одни межвидовые гибриды не отличаются по своему генетическому поведению от внутривидовых, а другие — от межродовых, гибриды же некоторых разновидностей ведут себя как типично межвидовые. Следовательно, правильнее делить скрещивания на близкие и отдаленные, подразумевая под отдаленностью высокую степень различия генетических структур скрещивающихся форм, отражающуюся на характере поведения гибридов. В свою очередь, отдаленные скрещивания Г. Д. Карпеченко разделил на конгруентные (совместимые) и инконгруентные (несовместимые).

К конгруентным отдаленным скрещиваниям он отнес гибриды некоторых географически разобщенных и экологически обособленных разновидностей (рас) и видов. Эта группа отдаленных скрещиваний растений с совместимыми (гомологичными) исходными геномами, но с различиями по большому числу генов, обладает, несомненно, большими формообразовательными возможностями. При этом обеспечивается, с одной стороны, исключительное разнообразие комбинаций наследственных факторов, а, с другой, жизнеспособность возникающих гибридов. В свете этих представлений, развитых Г. Д. Карпеченко, яснее стало значение географических факторов генетической, а в дальнейшем и эволюционной дивергенции организмов. Особую ценность представляют совместимые отдаленные скрещивания для селекционеров. Многие хорошо известные сорта пшениц имеют в своей истории гибридизацию форм из географически отдаленных областей или скрещивания близких видов. Материал мировых коллекций Всесоюзного института растениеводства, собранных под руководством Н. И. Вавилова, именно поэтому открывал селекционерам широчайшие возможности подбора пар при гибридизации.

Сам Г. Д. Карпеченко специально занимался гибридизацией географически отдаленных разновидностей ячменя, используя в ряде случаев в качестве одного из компонентов стандартные сорта. Эти очень перспективные исследования, к сожалению, были прерваны на том этапе, когда Г. Д. Карпеченко выделил ценные формы безостого ячменя с длинными колосьями, которые должны были вскоре пройти сортоиспытание.

Инконгруентные отдаленные скрещивания, по мнению Г. Д. Карпеченко, характеризуются той или иной степенью несовместимости «зародышевых плазм» родителей, т. е. их значительными генетическими различиями. Различия эти обычно касаются как генов, так и структуры и числа хромосом, а иногда и цитоплазмы (роль последней в механизме инконгруентности была показана в лаборатории Г. Д. Карпеченко рядом изящных экспериментов на тех же редечно-капустных гибридах).

Расщепление межвидовых гибридов, особенно при различиях в числе хромосом у родителей, идет с различными уклонениями от обычного менделирования. В основе этого поведения лежат разные типы конъюгации хромосом, до полного ее отсутствия включительно. Формообразовательные возможности инконгруентных скрещиваний потенциально гораздо шире, чем у скрещиваний конгруентных, но слабая жизненность и особенно стерильность и неконстантность большей части потомства ограничивают эти возможности.

Однако если инконгруентность вызывается несоответствием структуры родительских геномов, то она может быть нейтрализована путем удвоения хромосомных наборов у гибридов, т. е. путем амфидиплоидии. Очень важно при этом следующее обстоятельство: чем менее способны хромосомы родителей конъюгировать между собой, тем более правильную конъюгацию они дают в дважды диплоидной структуре амфидиплоида, так как здесь каждая хромосома может спариваться с гомологичной хромосомой своего же вида. После удвоения у них хромосомного комплекса гибриды приобретают константность. К таким крайним случаям инконгруентности геномов, как было уже отмечено ранее, относились межродовые гибриды редьки с капустой, полученные самим Г. Д. Карпеченко и, несмотря на свою инконгруентность (а вернее благодаря ей), ставшие полностью плодовитыми в амфидиплоидной структуре.

Исследования по отдалепной гибридизации и экспериментальному получению амфидиплоидных форм растений впоследствии нашли широкое развитие как в Советском Союзе, так и за рубежом. Пионерским работам Г. Д. Карпеченко и его теоретическим обобщениям принадлежит в этом отношении большая заслуга.

В 30-х годах Г. Д. Карпеченко и его сотрудниками были развернуты исследования, имеющие целью разработку методов искусственного получения растений с умноженным набором хромосом. Эти исследования непосредственно соприкасались с центральной проблемой его лаборатории — проблемой отдаленной гибридизации. Ранее обнаруженные факты умножения хромосомного комплекса имели случайный характер, они являлись следствием спонтанного нарушения нормального хода мейоза и образования половых клеток, происходили без участия человека. Теперь была поставлена задача найти пути экспериментального получения полиплоидных форм, обладающих, как уже было известно в то время, рядом новых признаков и свойств, часто имеющих большое селекциониое значение. Особенное внимание уделялось получению полиплоидных клеток методом регенерации и различным воздействиям факторов среды на процессы образования гамет и на оплодотворенную яйцеклетку. Сотруднице лаборатории С. А. Щавинской удалось методом регенерации получить тетраплоидную и октаплоидную капусту, а также тетраплоидные томаты и восстановить плодовитость у стерильной герани.

Состояние проблемы экспериментальной полиплоидии и гаплоидии Г. Д. Карпеченко осветил в 1935 г. в упомянутой выше обобщающей статье, не потерявшей большую ценность и до сих пор. В ней была показана широкая распространенность полиплоидии в природе, даны анализ эволюционной ее роли и оценка значения в практике выведения новых сортов. Особые главы посвящены закономерностям изменчивости и наследования признаков при полиплоидии, методам удвоения хромосомных наборов, мейозу, плодовитости и скрещиваемости полиплоидных форм, а также получению гаплоидов и их возможному селекционному использованию.

В дальнейшем (после открытия полиплоидизирующего действия колхицина) Г. Д. Карпеченко, воздействуя этим алкалоидом на проросшие семена, получил полиплоидные формы шестирядного ячменя и других его разновидностей. Им впервые была показана возможность возникновения под влиянием колхицина не только клеток с удвоенным числом хромосом, но и ряда хромосомных аберраций, вплоть до фрагментации хромосом и их разрыва по центромерам.

Самому Г. Д. Карпеченко уже не пришлось дожить до практической реализации его идей в селекции растений. Но его сотрудники и ученики внесли крупный вклад в использование полиплоидии в практике растениеводства. Упомянем здесь работы А. Н. Луткова по селекции перечной мяты и сахарной свеклы. Ему в 40-х годах впервые удалось получить методом полиплоидии плодовитую форму перечной мяты и на этой основе вывести высокоурожайный сорт «Прилукская 6». Уже в 50-х годах А. Н. Лутков, возглавив лабораторию полиплоидии в Институте цитологии и генетики Сибирского отделения АН СССР, занялся селекцией сахарной свеклы. Его лаборатория, вступив в содружество с рядом селекционных учреждений Советского Союза, явилась центром работ по выведению триплоидных сортов этой культуры. Триплоидная свекла очень быстро заняла большие площади в нашей стране. Можно упомянуть также очень интересные и практически важные работы ученицы Георгия Дмитриевича по Ленинградскому университету Н. К. Навалихиной, добившейся больших успехов в селекции тетраплоидных сортов красного клевера.

Но было бы неверно ограничиться здесь упоминанием только тех работ, которые непосредственно продолжали исследования самого Г. Д. Карпеченко. В его лаборатории начинал изучение генетики кукурузы и проблемы гетерозиса М. И. Хаджинов, ныне лауреат Ленинской премии, Герой Социалистического Труда, академик ВАСХНИЛ; его работы очень ценили и всячески поддерживали и И. И. Вавилов и Г. Д. Карпеченко. Ими (в частности, открытием мужской цитоплазматической стерильности) были заложены генетические основы замечательных селекционных достижений этого ученого.

Георгий Дмитриевич Карпеченко был ближайшим соратником Н. И. Вавилова в его борьбе за научную генетику и селекцию, за дарвинизм. Глубокая принципиальность, высокая честность ученого и гражданина, любовь к Родине определили его стойкость и последовательность в генетических дискуссиях 30-х годов. Эти особенности характера и поведения Г. Д. Карпеченко наряду с его научными трудами являются органической составной частью того наследия, которое он оставил советской пауке.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *