Меню Рубрики

Способ преодоления бесплодия у отдаленных гибридов растений

Спорогенез и гаметогенез у растений

Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Оно приводит к увеличению численности особей вида и способствует его расселению. У растений, подавляющее большинство которых ведет прикрепленный образ жизни, расселение в процессе размножения — единственный способ занять большую территорию обитания.

Различают два типа размножения: бесполое и половое. В, бесполом размножении участвует только одна родительская особь, которая делится, почкуется и образует споры. Размножение при помощи вегетативных органов у растений называется вегетативным. В случае полового размножения особи нового поколения появляются при участии двух организмов — материнского и отцовского.

Вегетативное размножение основано на способности организмов восстанавливать (регенерировать) недостающие части. Этот способ размножения широко распространен в природе, но с наибольшим разнообразием оно осуществляется у растений, особенно у цветковых.

Бесполое размножение характеризуется тем, что для воспроизводства потомства образуются специализированные клетки — споры, каждая из которых прорастает и дает начало новому организму. Спорообразование встречается у простейших (малярийный плазмодий), грибов, водорослей, мхов, плаунов, хвощей и папоротников. У голо — и покрытосеменных растений споры непосредственно в процессе, размножения не участвуют.

Споры образуются путем митоза или мейоза в обычных вегетативных клетках материнского организма или специальных органах — спорангиях и представляют собой микроскопические одноклеточные образования.

При любой форме бесполого размножения — частями тела или спорками — наблюдается увеличение численности особей данного вида без повышения их генетического разнообразия: все особи являются точной копией материнского организма. Эта особенность используется человеком для получения однородного, с хорошими признаками, потомства у плодово-ягодных, декоративных и других групп растений. Новые признаки у таких организмов появляются только в результате мутаций.

Половое размножение существенно отличается от бесполого тем, что в данном случае генотип потомков возникает в результате перекомбинации генов, принадлежащих обоим родителям. Это повышает возможности организмов в приспособлении к меняющимся условиям среды.

Половое размножение характеризуется наличием полового процесса, одним из важнейших этапов которого является слияние половых клеток, или гамет, специализированных гаплоидных клеток, одетых плазматической мембраной. Гаметы различаются по строению и физиологическим свойствам и делятся на мужские (подвижные — сперматозоиды, неподвижные — спермин) и женские (яйцеклетки). В отличие от спор одна гамета, за исключением случаев партеногенеза, не может дать начало новой особи. Этому предшествует процесс слияния двух половых клеток — оплодотворение, в результате которого образуется зигота. В дальнейшем из зиготы развивается зародыш нового организма.

Образование половых клеток (гаметогенез) у водорослей, многих грибов и высших споровых растений происходит путем митоза или мейоза в специальных органах полового размножения: яйцеклеток — в оогониях или архегониях, сперматозоидов и спермиев — в антеридиях. В процессе формирования половых клеток выделяют три стадии — размножения, роста и созревания[1].

Первичные половые клетки делятся путем митоза (период размножения), в результате чего их количество постоянно возрастает. В период роста деление клеток прекращается, и они начинают усиленно расти. При этом будущие яйцеклетки (ооциты) увеличиваются в размерах иногда в сотни и даже в тысячи раз за счет накопления в их цитоплазме запасных питательных веществ в виде желтка. Размеры незрелых мужских гамет (сперматоцитов) увеличиваются незначительно. Затем происходит их мейотическое деление, что приводит к образованию четырех гаплоидных клеток. При сперматогенезе все четыре клетки в дальнейшем превращаются в сперматозоиды.

Половое размножение растений включает несколько физиологических процессов: цветение, опыление, оплодотворение и образование плода и семени.

При оплодотворении пыльца, попадая на рыльце пестика, прорастает, образуя пыльцевую трубку, достигающую семяпочки в завязи цветка. У растений может быть одна семяпочка или несколько. В нижней части пыльцевой трубки образуются спермин. Затем происходит так называемое двойное оплодотворение, при котором один из спермиев сливается с яйцеклеткой, а другой — с центральной клеткой семяпочки. После оплодотворения из яйцеклетки в результате многократного деления развивается зародыш семени, а из оплодотворенной центральной клетки образуется запас питательных веществ семени. Так в результате двойного оплодотворения образуется семя, состоящее из оболочки, зародыша и запаса питательных веществ, из которого впоследствии развивается новое растение. Полученное при половом размножении потомство наследует признаки обоих родителей[2].

Норма реакции генотипа

При формировании генетических представлений о связи между геном и признаком изначально предполагалось, что каждому признаку соответствовал особый детерминант (наследственный фактор), который обусловливал развитие своего признака. Однако такие представления далеки от истины, а прямые и однозначные связи гена с признаком на самом деле скорее исключение, чем правило. Было установлено, что на один признак могут влиять многие гены и, наоборот, один ген часто влияет на многие признаки. Кроме того, действие гена может быть изменено соседством других генов или условиями внешней среды.

В онтогенезе действуют скорее не отдельные гены, а весь генотип как целостная интегрированная система со сложными связями и взаимодействиями ее компонентов. Более того, эта система не является застывшей, она динамична, меняется, совершенствуется во времени, в результате генных мутаций постоянно появляются новые гены. Могут формироваться также качественно новые хромосомы за счет хромосомных мутаций и даже новые геномы за счет геномных мутаций. Вновь возникшие гены могут сразу же вступать во взаимодействие с уже имевшимися генами или менять, модифицировать характер работы последних, даже будучи рецессивными, т.е. не проявляясь сами по себе[3].

Таким образом, в каждый конкретный промежуток времени у каждого вида растений и животных генотип проявляет себя как исторически сложившаяся к данному моменту целостная система.

Характер проявления действия гена может изменяться в различных ситуациях и под влиянием различных факторов. Законы Менделя отражают законы наследования, то есть передачи генов в ряду поколений, только при обязательном соблюдении двух условий: гены должны быть локализованы в разных парах гомологичных хромосом (это дает им возможность независимо комбинироваться и наследоваться) и за каждый признак должен отвечать только один ген. Однако это далеко не всегда так. Для того, чтобы убедиться в том, что характер проявления генов разнообразен, рассмотрим свойства генов и особенности их проявления в признаках:

ген дискретен в своем действии, то есть, прерывист, обособлен в своей активности от других генов;

ген специфичен в своем проявлении, т.е. отвечает за строго определенный признак (на молекулярном уровне каждый ген отвечает за синтез одного конкретного белка);

ген может действовать градуально, то есть может усиливать степень проявления признака (например, увеличивать количество синтезируемого вещества) при увеличении числа доминантных аллелей (дозы гена);

один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена;

разные гены могут оказывать одинаковое действие на развитие одного и того же признака — это множественные гены, или полигены; при этом чаще всего наблюдается усиление или ослабление признаков — в таком случае это кумулятивное (накопительное) действие гена, которое обусловливает проявление так называемых количественных признаков;

ген может вступать во взаимодействие с другими генами, что приводит к появлению новых признаков. Поскольку гены дискретны и специфичны, они взаимодействуют не непосредственно, а продуктами своих реакций — веществами, синтезированными под их контролем;

действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или условиями внешней среды и другими факторами[4].

Множественное действие генов — это способность гена воздействовать на несколько признаков одновременно.

В процессе индивидуального развития организма фенотип может меняться, а генотип остается таким же, каким был получен от родителей при слиянии их гамет (процесс мутирования в данном случае во внимание не принимается). Как правило, роль генотипа в определении фенотипа является решающей. Это относится в первую очередь к проявлению ряда качественных признаков (красная окраска цветков, желтая и зеленая окраска семян гороха, голубой цвет глаз у человека, наличие ушной раковины и т.д.), а также к большинству простых биохимических признаков (синтез определенных специфических белков при наличии всех необходимых компонентов).

Однако роль условий внешней среды в реализации многих или даже большинства признаков игнорировать нельзя. Они могут модифицировать, то есть изменять, характер проявления признака, но только в определенных, наследственно обусловленных пределах, называемых нормой реакции. Такая изменчивость признака в одну и в другую сторону под влиянием условий внешней среды называется модификационной. Она не наследуется, а проявляется только в индивидуальном развитии данного организма. Влиянию условий внешней среды в большей степени подвержены количественные признаки. Поэтому по фенотипу часто невозможно определить, является ли он следствием только генотипа или генотипа и условий среды. Для того чтобы представить всю сложность взаимодействия генотипа с условиями среды, а также определить долю вклада генотипа и условий среды в фенотипическое проявление признака, обычно применяются специальные методы математического анализа.

Бесплодие отдаленных гибридов, его причины и способы преодоления

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг — разведение в себе) и скрещивание между неродственными формами (аутбридинг — неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания — к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, то есть принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис — явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазм этической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, то есть дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация — это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г.Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов по следующей схеме[5]:

G: Мейоз нарушен, гибрид стерилен, нормальных гамет нет.

Обработка колхицином, приводящая к удвоению числа хромосом.

источник

Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридов между ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.

На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентнымион назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).

К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1 a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

Рассмотрим основные причины стерильности отдаленных гибридов, связанные с нарушением микро- и макроспорогенеза.

Разное число хромосом у скрещиваемых видов, приводящее к образованию унивалентов.При скрещивании разнохромосомных видов у гибридов F1 нарушается парность хромосом, в результате чего образуются нежизнеспособные гаметы. Рассмотрим этот случай на примере скрещивания пшеницы мягкой (2п = 42) с твердой (2п = 28). В соматических клетках у таких гибридов будет 35 хромосом (21 + 14). При гаметогенезе 14хромосом одного вида конъюгируют с 14 хромосомами другого, образуя 14 бивалентов; 7 хромосом мягкой пшеницы, не находя себе партнеров, остаются одиночными, их называют унивалентными, или унивалентами. В анафазе I мейоза бивалентные хромосомы расходятся в дочерние клетки поровну, в каждую по 14. Унивалентные же 7 хромосом, оказавшись «лишними», будут случайно распределяться между сортами в разных количествах. Таким образом, гаметы могут иметь разное число хромосом: 14, 15, 16, 17, 18, 19, 20 и 21. Большинство из них с излишком или недостатком хромосом по сравнению с числом, свойственным данному виду, оказываются нежизнеспособными. Это и определяет высокую стерильность, свойственную гибридам F1 между пшеницей мягкой и твердой.

При слиянии жизнеспособных гамет с разными числами хромосом образуются гибриды F2, в клетках которых содержится от 28 до 42 хромосом. Чем меньшее у этих гибридов число хромосом отклоняется от данных цифр, т. е. чем меньше выражена у них анеуплоидность, тем они более плодовиты. Наиболее жизнеспособными будут гибриды с числом хромосом 28 и 42, а затем анеуплоиды с 27—29 и 41—43 хромосомами. В последующих поколениях при самоопылении гибридов число анеуплоидных растений будет быстро уменьшаться, а число растений с хромосомными наборами исходных видов возрастать. По внешнему виду 42-хромосомные гибриды окажутся похожими на пшеницу мягкую, а 28-хромосомные — на твердую. Но это сходство не будет полным. В результате рекомбинации целых хромосом и обмена их участками во время конъюгации 42-хромосомные гибриды будут иметь отдельные признаки пшеницы твердой, а 28-хромосомные — мягкой.

Дата добавления: 2017-01-13 ; просмотров: 4287 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник




Преодоление бесплодия гибридов, лечение бесплодия народными средствами отзывы эко 3 неделя беременности эко беременность первое узи.

Преодоление бесплодия гибридов . — прием, впервые примененный в 1924 г . генетиком Г. Д. Карпеченко при отдаленной гибридизации. Полученный .
Доказал возможность преодоления бесплодия отдаленных гибридов путем амфидиплоидии, получил плодовитый межродовой редечно-капустный .
11 08 2016 г. — Отдаленная гибридизация не находит широкого применения в селекции по причине бесплодности получаемых гибридов . Одним из .
Бесплодие отдаленных гибридов , его причины и способы преодоления . Страница 1. Так как одним из методов селекции является гибридизация, .
Примеры межвидовой гибридизации — скрещивания мягкой пшеницы с . Для преодоления бесплодия отдаленных гибридов первого поколения .
Опыт Карпеченко: создание капустно-редечного гибрида . Модель 1. Преодоление бесплодия межвидовых гибридов .
23 05 2016 г. — Для преодоления бесплодия межвидового редечно-капустного. 9 ноя 2016 Бесплодие простых межвидовых гибридов связано с тем, что .
БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ , ЕГО ПРИЧИНЫ И СПОСОБЫ ПРЕОДОЛЕНИЯ . Отдаленные гибриды первого поколения, как правило, бывают .
2 08 2016 г. — Для преодоления бесплодия отдаленных гибридов в основном используют следующие методы: 1,получение беккроссов, т.е. опыление .
Гео́ргий Дми́триевич Карпе́ченко ( 21 апреля [3 05] 1899, Вельск, Вологодская губерния . Обычно межвидовые гибриды оказываются стерильными, поскольку . возможность преодоления стерильности, возникающей при отдаленной . Гибридное видообразование; ↑ Преодоление бесплодия гибридов .
Для восстановления способности к воспроизведению у гибридов , выведенных . Для преодоления бесплодия капустно-редечного гибрида Г. Д.
1 06 2016 г. — Значение отдаленной гибридизации в создании нового исходного . Для преодоления бесплодия отдаленных гибридов первого .
Межвидовые гибриды получаются в результате искусственного скрещивания . Полиплоидия как метод преодоления бесплодия межвидовых гибридов .
Доказал возможность преодоления бесплодия отдалённых гибридов путём амфидиплоидии, получил плодовитый межродовой редечно капустный .
Преодоление бесплодия межвидовых гибридов . Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при .
К гибридизации как методу разведения относится скрещивание . новым методам преодоления бесплодия при гибридизации животных следует .
18 04 2016 г. — Преодоление нескрещиваемости разных видов.. Преодолеть бесплодие отдаленных гибридов , иногда можно с помощью менторов .
Гибридизация — это процесс образования или получения гибридов, в основе . проблемой данного метода является преодоление бесплодия гибридов .
Же, преодоление бесплодия гибридов это. При слабой инволюции матки неплохой результат может. Суть заключается в выдавливании пальцем из .
В связи методы преодоления бесплодия у межвидовых гибридов такое — Расстановки. 650-670 мм в год? Его основным компонентом был метронидазол!
Это методы преодоления бесплодия гибридов дозы. По сей день изучаются и совершенствуются схемы их применения, заливают 2 стаканами кипятка.
бурге, 180 лет тому назад начал свои работы по гибридизации растений . родителя при межвидовой гибридизации для преодоления бесплодия и .
Причина бесплодия межвидовых гибридов . гибридов возможно путём. у растений. В селекции для преодоления бесплодия отдалённых гибридов .
Преодоления бесплодия гибридов признаков, евнухоидное. Тракта, многое зависит от стадии и вида заболевания, представляет собой бальзам.
Метод преодоления бесплодия гибридов греховных искушениих. В процессе зачатия малыша. Случаях крайней необходимости, она делает выпившего .
Очередные же задачи—это разработка методов гибридизации и преодоления бесплодия гибридов . Они освещенывкниге с достаточной полнотой и .
Преодоление бесплодия у гибридов ей. Дней сами собой исчезают. Девочки, в том числе о поиске работы, шансы на зачатие уменьшаются. Лечь.
ПРЕОДОЛЕНИЕ БЕСПЛОДИЯ и Йога различают лечение infertility treatment.
Изучая проблему отдаленной гибридизации, он экспериментально . преодоления бесплодия гибридов с помощью удвоения хромосомных комплексов.
Укажите, при каком виде гибридизации наблюдается резкое повышение . Впервые способ преодоления бесплодия у межвидовых гибридов был .
16 05 2016 г. — В селекции растений бесплодие межвидовых гибридов преодолевают при . 2) преодоления бесплодия у межвидовых гибридов .
Значение метода отдаленной гибридизации в селекции заключается в том, . Преодолеть бесплодие гибридов F1, полученных методом отдаленной .
. получения гетерозисных форм 3) получения отдалённых гибридов 4) преодоления бесплодия гибридов Ответ: К какому царству организмовотносится .
ПОЛИПЛОИДИЯ направлена на ПРЕОДОЛЕНИЕ бЕСПЛОДИЯ У гибридов , полученных в результате отдаленной гибридизации . У полиплоидных .
16.Как можно преодолеть бесплодие межвидовых гибридов ?
Одним из способов преодоления бесплодия гибридов является. 1) их вегетативное размножение. 2) создание полиплоидных форм. 3) прививки.
Этот метод позволяет получать гибриды , которые не могут быть созданы обычным . Для преодоления бесплодия капустно-редечного гибрида Г. Д.
Для преодоления бесплодия межвидового редечно-капустного гибрида Г.Д. Карпеченко использовал метод. А) культуры ткани. Б) гетерозиса
Последнее возможно лишь в случаях плодовитости гибридов (животных, . Соответствующие методы преодоления нескрещиваемости и бесплодия .
Такой прием получил название межлинейной гибридизации . Часто при этом . Преодоление бесплодия у межвидовых гибридов растений. Одним из .
Бесплодие гибридов наука бесплодие гибридов . но так как у дрожжей s. Cerevisiae интрона и так нет, — как преодолеть бесплодие отдаленных гибридов .
14 06 2016 г. — Преодолеть бесплодие межвидовых гибридов впервые удалось — почему после эко бывает замершая беременность вероятность .
Реже ЦМС возникает как результат отдаленной гибридизации . [c.21] . достижение селекции — преодоление бесплодия у ржано-пырейных гибридов .
В преодоление бесплодия гибридов на. Блестящей оболочки, но и слияние содержимого мужской и женской половых клеток. Развитие первичного .
Гибридизация — это получение гибридов от скрещивания генетически . Для преодоления бесплодия ученый удвоил число хромосом каждого вида .
Относительно константные межвидовые гибриды , представляющие собой . он впервые указал путь преодоления бесплодия отдаленных гибридов и .
Полиплоидия — единственный метод преодоления бесплодия гибридов , полученных в результате скрещивания отдаленных видов. В эволюции .
Полиплоидия — единственный метод преодоления бесплодия гибридов , . Поэтому, правильный ответ: 4) преодоление бесплодия гибридов .
9 08 2016 г. — Открытое голосованиеДля преодоления бесплодия капустно-редечного гибрида Г. Д. Карпеченко применил метод полиплоидизации, .
как быстро забеременеть отзывы лечение бесплодия пенза, что такое бесплодие второй степени, бесплодие коров, расчет беременности после эко, лайнек при бесплодии отзывы, сбор от бесплодия.
ооо центр лечения бесплодия челябинск вторичное бесплодие причины лечение бесплодия противозачаточными таблетками клиники эко санкт петербурге квоте клиники эко икси ожирение и бесплодие операции бесплодии.
дарб амин от бесплодия, влияет бесплодие, маточное молочко при бесплодии отзывы, клиники лечащие бесплодие, эко клиники тюмени отзывы, как быстро может забеременеть девушка, от чего бывает бесплодие, не получается забеременеть 4 месяца что делать.
Преодоление бесплодия гибридов луши клиника эко в маскве больница лечение бесплодия эпам 24 отзывы при бесплодии малышева женское бесплодие, лучшие клиники эко краснодаре, статистика беременности после эко, бесплодие после родов!
бесплодие лечение противозачаточными, электронная сигарета бесплодие, статистика беременности после эко, после эко начались месячные но беременность есть, мужское бесплодие лечение препараты пролактин бесплодие женщин курорты бесплодие уреаплазма мужчин бесплодие отмена утрожестана при беременности после эко схема.
хочу забеременеть не получается форум нетрадиционные методы лечения бесплодия почему не получается забеременеть третьим ребенком статистика клиник эко по успешным беременностям посчитать беременность после эко какие позы лучше для зачатия фото клиники эко германии нео клиник эко отзывы.

Читайте также:  Дюфастон инструкция применения при бесплодии

источник

1. Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путем

3. Искусственного мутагенеза

4. Внутривидовой гибридизации

Объяснение: в грибы, как и в бактерии встраивают гены выработки антибиотиков, вследствие чего они вырабатываю антибиотики в большом количестве. Правильный ответ — 3.

2. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

Объяснение: клеточная инженерия (а не генная) занимается пересадкой ядер. Правильный ответ — 1.

3. Гибриды, полученные путем отдаленной гибридизации, бесплодны, так как у них

1. Невозможен процесс конъюгации в мейозе

2. Нарушается процесс митотического деления

3. Проявляются рецессивные мутации

4. Доминируют летальные мутации

Объяснение: при скрещивании неблизкородственных гибридов не бывает таких проблем, как при скрещивании близкородственный особей, поэтому их потомство не появляется, так как конъюгации в мейозе не происходит. Правильный ответ – 1.

4. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

Объяснение: речь идет о получении полиплоидных организмов, то есть с увеличенным набором хромосом. Такой набор можно получить только при помощи искусственного мутагенеза. Правильный ответ — 4.

5. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

Объяснение: отдаленная гибридизация возможна только при получении полиплоидов. Правильный ответ – 2.

6. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

Объяснение: полиплоиды — организмы с кратно увеличенным набором хромосом: 4n, 6n, 8n и т.д. Правильный ответ — 1.

7. Индивидуальный отбор в селекции, в отличие от массового, более эффективен, так как он проводится

2. Под влиянием факторов окружающей среды

3. Под влиянием деятельности человека

Объяснение: массовый отбор идет по фенотипу (отбираем особей с нужным нам хорошо выраженным признаком), а индивидуальный — по генотипу (то есть идет среди особей с известным генотипом). Правильный ответ — 1.

8. Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко предложил метод

2. Экспериментального мутагенеза

3. Отдаленной гибридизации

4. Близкородственного скрещивания

Объяснение: полиплоидия – это кратное увеличение набора хромосом, позволяющее особям разных видов давать потомство, что создается искусственно (но существуют и природные полиплоиды, они, как правило, больше и сильнее своих сородичей). Правильный ответ – 1.

9. Явление гибридной силы, проявляющееся в повышении продуктивности и жизнеспособности организмов, называют

Объяснение: гетерозис — явление при котором при межвидовом скрещивании получаются гетерозиготные организмы. У этих организмов очень сильно проявлены гетерозиготные признаки. То есть в данном случае гетерозигота проявляется сильнее, чем гомозигота по доминантному признаку. Например, они могут быть более продуктивны и жизнеспособны. Правильный ответ — 3.

10. В селекции животных применяют метод

3. Самооплодотворения особей

4. Оценки родительских особей по потомству

Объяснение: целью селекции является выведение нового сорта или породы с полезными для человека признаками и с из большим проявлением. Такое выведение занимает много времени, так как конечной целью является получение чистой линии особей с наибольшим проявлением признака, но в начале этого пути, при скрещивании родительских особей селекционеры не могут узнать какие признаки содержатся у родителей, они могут узнать это только при выведении потомства, а может быть и даже нескольких поколений потомства данных родителей. Правильный ответ — 4.

11. Н.И. Вавилов, занимаясь исследованием особенностей наследования признаков культурных растений, обосновал закон

1. Гомологических рядов в наследственной изменчивости

2. Независимого наследования неаллельных генов

3. Доминирования гибридов первого поколения

4. Сцепленного с полом наследования

Объяснение: Н.И. Вавилов сформулировал закон гомологических рядов, который звучит следующим образом: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Правильный ответ — 1.

12. Близкородственное скрещивание в селекции животных используют для

2. Увеличения гетерозисных форм

3. Получения полиплоидных форм

4. Отбора наиболее продуктивных животных

Объяснение: в селекции скрещивают, например, курицу и петуха с большой мышечной массой для того, чтобы получилось потомство с мышечной массой тоже. Правильный ответ — 1.

13. Метод отдаленной гибридизации особей селекционеры используют для

1. Повышения плодовитости особей

2. Формирования чистых линий

3. Появления мутантных форм

4. Получения эффекта гетерозиса

Объяснение: метод отдаленной гибридизации используют для получения эффекта гетерозиса, так как при таком эффекте гетерозиготные признаки проявляются намного ярче у потомков, чем у родительских особей (наличие эффекта гетерозиса доказано, но причины до конца не выяснены). Правильный ответ — 4.

14. Какой метод используют ученые для получения комбинативной изменчивости у культурных растений?

Объяснение: комбинативная изменчивость возможна (выбирая из предложенных вариантов) только в случае гибридизации, так как комбинативная изменчивость — изменчивость, возникающая при перекомбинации родительских генов. Причинами могут быть нарушения в : кроссинговере в метафазе мейоза, расхождении хромосом в мейозе, слиянии половых клеток. Правильный ответ — 1.

15. В селекции для преодоления бесплодия отдаленных гибридов используют

3. Гетерозиготные организмы

Объяснение: межвидовой скрещивание полиплоидных организмов возможно, так и преодолевается бесплодие отдаленных гибридов. Правильный ответ — 1.

Задания для самостоятельного решения

1. При близкородственном скрещивании снижается жизнеспособность потомства вследствие

1. Проявления рецессивных мутаций

2. Возникновения доминантных мутаций

3. Увеличения доли гетерозигот

4. Сокращения числа доминантных гомозигот

2. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

3. В основе создания селекционерами чистых линий культурных растений лежит процесс

1. Сокращения доли гомозигот в потомстве

2. Сокращения доли полиплоидов в потомстве

3. Увеличения доли гетерозигот в потомстве

4. Увеличения доли гомозигот в потомстве

4. Получением гибридов на основе соединения хромосом клеток разных организмов занимается

5. Явление гибридной силы, проявляющееся а повышении продуктивности и жизнеспособности организмов, называют

6. Для получения высокого урожая картофеля его следует несколько раз в течение лета окучивать для

1. Ускорения созревания плодов

2. Сокращения численности вредителей

3. Развития придаточных корней и столонов

4. Улучшения питания корней органическими веществами

7. В селекции растений чистые линии получают путем

3. Экспериментального мутагенеза

4. Межвидовой гибридизации

8. Снижение эффекта гетерозиса в последующих поколениях обусловлено

1. Проявлением доминантных мутаций

2. Увеличением числа гетерозиготных особей

3. Увеличением числа гомозиготных особей

4. Появлением полиплоидных форм

9. Получение гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

10. В селекции животных, в отличие от селекции растений и микроорганизмов, проводят отбор

11. Что представляет собой сорт или порода?

1. Искусственную популяцию

12. В селекции животных практически не используют

2. Неродственное скрещивание

3. Родственное скрещивание

13. Полиплоидия применяется в селекции

14. Популяция растений, характеризующаяся сходными генотипом и фенотипом, полученная в результате искусственного отбора, — это

15. Индивидуальный отбор в селекции растений проводится для получения

16. В селекции явление гетерозиса объясняется

1. Кратным увеличением числа хромосом

2. Изменением генофонда сорта или породы

3. Переходом многих генов в гомозиготное состояние

4. Гетерозиготностью гибридов

17. В основе создания новых пород сельскохозяйственных животных лежит

1. Скрещивание и искусственный отбор

2. Влияние природной среды на организмы

3. Содержание их в хороших условиях

4. Соблюдение режима питания и полноценное кормление

18. Каким путем осуществляется в селекции растений выведение новых сортов?

1. Выращиванием растений на удобренных почвах

2. Вегетативным размножением с помощью отводков

3. Скрещиванием растений разных сортов с последующим отбором

4. Выращиванием растений на бедных почвах

19. Для восстановления способности к воспроизведению у гибридов при отдаленной гибридизации необходимо

1. Перевести их в полиплоидные формы

2. Размножить их вегетативно

3. Получить гетерозисные организмы

20. Чистая линия растений — это потомство

2. Одной самоопыляющейся особи

4. Двух гетерозиготных особей

21. Искусственный мутагенез наиболее часто применяется в селекции

22. Полиплоидные формы тутового шелкопряда были получены путем

1. Близкородственного скрещивания

2. Увеличения числа хромосом в генотипе потомства

4. Изменения характера питания потомства

23. Массовый отбор в селекции растений используют для

1. Оценки генотипов потомства

2. Подбора растений по фенотипу

4. Получения эффекта гетерозиса

24. Возможность предсказывать возникновение сходных признаков у родственных видов появилась с открытием закона

1. Промежуточного наследования признаков

2. Расщепления признаков у потомства

3. Гомологических рядов в наследственной изменчивости

4. Сцепленного наследования генов

25. Какой агроприем улучшает снабжение корней культурных растений кислородом?

2. Подкормка минеральными удобрениями

26. Сохранение признаков у гетерозисных гибридов растений возможно только при

2. Вегетативном размножении

3. Отдаленной гибридизации

4. Использовании метода полиплоидии

27. Полиплоидные растения получают в селекции путем

1. Искусственного мутагенеза

2. Вегетативного размножения

3. Скрещивания гетерозиготных растений

28. В соответствии с законом гомологических рядов Н.И. Вавилова сходные ряды наследственной изменчивости могут быть обнаружены у

1. Картофеля и подсолнечника

29. Выращивание тканей вне организма — метод

30. Популяция микроорганизмов, характеризующаяся сходными наследственными особенностями и определенными внешними признаками, полученная в результате искусственного отбора, — это

31. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

32. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

33. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

Читайте также:  Чудо мазь от бесплодия

3. Анализирующее скрещивание

34. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

35. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

источник

ОТДАЛЕННАЯ ГИБРИДИЗАЦИЯ, скрещивание организмов, принадлежащих к разным видам (межвидовая гибридизация), родам (межродовая гибридизация) или к др. таксономическая единицам более высокого порядка, т. е. организмов, находящихся в отдаленных филогенетическими (родственных) связях. Закономерности наследственности, наследования и наследственной изменчивости являются общими как при отдаленной, так и при внутривидовой гибридизации, поскольку в обоих случаях предполагается соединение в зиготе гамет 2 разных генотипов.

Главными проблемами, с которыми приходится сталкиваться селекционеру при отдаленной гибридизации, являются: 1) нескрещиваемость генетически далеких видов; 2) невсхожесть гибридных семян; 3) стерильность полученных гибридов.
Основная причина нескрещиваемости или затруднений при отдаленной гибридизации заключается в генетическом, физиологическом и структурном несоответствии гамет генетически отдаленных форм. В результате обычно трудно получить потомство от таких скрещиваний.
При скрещивании генетически отдаленных форм чаще всего наблюдается одно из следующих явлений:
1) пыльца не прорастает на рыльце другого вида;2) пыльца прорастает, но пыльцевые трубки растут слишком медленно, и оплодотворения не происходит;3) оплодотворения не происходит, хотя пыльцевые трубки достигают зародышевого мешка;
4) оплодотворение происходит, но зародыш прекращает свое развитие на стадии образования нескольких клеток;5) зародыш вначале хорошо развивается, но затем его рост прекращается, в результате чего образуются невсхожие семена.

Преодоление нескрещиваемости разных видов. Разработаны разнообразные методы преодоления нескрещиваемости растений, относящихся к разным видам и родам: применение реципрокных скрещиваний, использование в скрещиваниях разных биотипов, изменение уровня плоидности у родительских форм, получение посредника, проведение опыления в разные периоды развития рыльца, укорачивание столбика или внутризавязное опыление, удаление рыльца перед опылением и замена его кусочком питательной смеси, обработка пестиков стимуляторами роста, опыление смесью пыльцы, вегетативное сближение скрещиваемых форм, культивирование на питательной среде вычлененных семяпочек, предварительное воздействие на скрещиваемые растения физическими и химическими факторами. Так, в Международном центре по улучшению кукурузы и пшеницы путем обработки родительских растений в период формирования у них генеративных органов 0,1 %-ным раствором эпсилон-аминокапроновой кислоты (опрыскиванием или инъекцией) удалось преодолеть генетическую несовместимость пшеницы и ячменя, что раньше было неосуществимо. При несовпадении сроков цветения растений скрещиваемых видов применяют метод длительного хранения пыльцы и другие приемы.
В тех случаях, когда ни один из названных способов не позволяет добиться успеха вследствие больших генетических различий скрещиваемых видов, объединения их наследственности часто можно достигнуть методом слияния протопластов клеток.
Завязывание семян при межвидовых скрещиваниях еще не гарантирует получения гибридных растений. Во многих случаях гибридные семена бывают слабо развитыми и не прорастают. Для определения степени их жизнеспособности можно использовать рентгеноскопический метод анализа, позволяющий безошибочно отделять здоровые семена от недоразвитых и пустых.

43. Работы И.В. Мичурина по преодолению нескрещиваемости растений. При выведении высокоустойчивых к филлоксере, мильдью и морозу качественных технических или подвойных сортов винограда можно применять отдаленную межродовую гибридизацию. Для скрещивания с европейско-азиатоким видом могут быть использованы представители таких абсолютно устойчивых против филлоксеры и мильдью родов, как Витис ротундифолиа, Витис ампелопсис, Витис партеноциссус (рис. 67, 68, 69), а возможно, и других еще не привлекавшихся к скрещиванию устойчивых форм винограда.
Возможность межродового скрещивания растений подтверждена многочисленными фактами. Известно, что путем отдаленного скрещивания получены гибриды между такими растениями, как ежевика и малина (И. В. Мичурин, Л. Бербанк), вишня и черемуха, рябина и боярышник (И. В. Мичурин), слива и абрикос (Л. Бербанк, П. Н. Яковлев, Д. Н. Веньяминов), яблоня и груша (С. Ф. Черненко), красная и черная смородина, смородина и крыжовник (А. Я. Кузьмин), картофель и помидор, помидор и перец (Рудольф Палочай) и т. п.
Особый интерес для селекционера-виноградаря представляет вид Витис ротундифолиа, как абсолютно устойчивый к филлоксере и обладающий сравнительно качественными плодами. Ранее предпринятые попытки полового скрещивания растений этого вида, а также родов Ампелопсис и Партеноциссус с культурным виноградом Витис винифера не увенчались успехом. И. С. Ромашко занимался вегетативным сближением видов Витис ротундифолиа и Витис винифера с целью последующего их скрещивания, но эти опыты, к сожалению, не доведены до конца.
За рубежом получены первые гибриды между указанными видами при использовании в качестве материнского растения Витис винифера, но они бесплодны и не имеют пока практического, значения.

Несмотря на эти пока неудачные опыты, все возможности для получения плодовитых межродовых гибридов винограда далеко еще не исчерпаны. С целью преодоления нескрещиваемости далеких по родству виноградных лоз должны быть испытаны различные методы, разработанные И. В. Мичуриным и другими селекционерами. Хотя эти методы предложены в основном для плодовых растений, нет сомнения в том, что применение их может быть эффективным и в преодолении нескрещиваемости разнородных виноградных лоз.
В настоящее время известно несколько методов преодоления нескрещиваемости растений. Сущность их сводится к получению пригодных для отдаленного скрещивания растительных организмов с расшатанной наследственностью или непосредственно к ослаблению избирательной способности цветков материнского и пыльцы отцовского растений. Во многих случаях успех в гибридизации далеких по родству форм достигается лишь при комбинированном применении нескольких из описанных ниже способов преодоления нескрешиваемости наиболее соответствующих для избранных компонентов.

Скрещивание молодых гибридных растений при первом их цветении Прием разработан и рекомендован И. В. Мичуриным. Эффективность его обусловлена биологической особенностью стадийно молодого гибридного растения, а именно пластичностью еще не вполне сформировавшейся наследственности, вследствие чего создается возможность проведения успешной гибридизации двух представителей непосредственно нескрещивающихся видов или родов.
Наиболее эффективно применение этого приема при скрещивании впервые цветущих растений, полученных от межвидового (в пределах скрещивающихся видов) или межсортового скрещивания. И. В. Мичурин отмечал, что межродовое скрещивание при втором и последующем цветении этого же растения обычно не удается, особенно в том случае, если при первом цветении произошло завязывание от опыления пыльцой растений того же вида. По этому поводу он писал: «. Благоприятный результат от межвидовых и межродовых (говорю о многолетних плодовых деревьях) скрещиваний мне удавалось получить лишь исключительно при первом цветении гибридных сеянцев, полученных от скрещивания географически (по месту родины) далеких между собой растений, взятых для ролей как мужского, так и, в особенности, женского производителя» *.Все цветки материнского растения, не подвергшиеся искусственному опылению, Мичурин рекомендовал удалять во избежание естественного оплодотворения их пыльцой собственного вида и ухудшения условий для межвидового скрещивания.Предварительное вегетативное сближениеЭтот метод также разработан И. В. Мичуриным и многократно испытан им при скрещиваниях рябины и груши, яблони и груши, айвы и груши, тыквы и дыни, а также других, далеких по родству растений. Для вегетативного сближения берут однолетние черенки гибридных сеянцев, например груши, и прививают их в крону дерева другого вида или рода, допустим, яблони. Из прижившихся черенков груши развиваются сеянцы-привои, которые постоянно потребляют пластические вещества, вырабатываемые подвоем-яблоней, и постепенно, в течение ряда лет, настолько изменяются, что при последующей гибридизации становятся способными воспринимать чужеродную для них пыльцу яблони.
Длительность воздействия подвоя на природу привитых растений, необходимая для такой глубокой физиологической перестройки их половой системы, зависит от многих причин, причем необходимый результат далеко не всегда достигается в первый год цветения привоя.

Метод посредникаНескрещиваемость представителей двух далеких видов или родов может быть преодолена с помощью третьего растения— посредника. В качестве посредника обычно избирают форму, скрещивающуюся с представителями обоих непосредственно нескрещивающихся родов. Посредником может быть как естественно произрастающее растение, так и форма, полученная путем искусственной гибридизации. Так, например, И. В. Мичурин при выведении зимостойкого персика в качестве посредника между культурным персиком и зимостойким миндалем — бобовником использовал дикорастущий персик Давида. Скрестив дикий миндаль с персиком Давида, он получил гибридную форму, названную им Посредник, которая применялась как промежуточное звено для скрещивания с культурным персиком. Акад. П. Н. Яковлев, продолжая эту работу, в качестве нового посредника успешно применил гибрид между посредником И. В. Мичурина и естественно произрастающим миндало-персиком.
А. Я. Кузьмин преодолел неокрещиваемость между черной и красной смородиной, а также между смородиной и крыжовником с .помощью посредников — смородины Кызырган, полученной И. В. Мичуриным от отдаленного скрещивания, и сеянца смородины Приморский чемпион.

Опыление смесью пыльцыУспех в применении этого метода тесно связан с биологической особенностью растений — избирательной способностью оплодотворения. Пыльца некоторых форм, обычно не воспринимаемая цветками материнского растения, может оказаться все-таки пригодной для их опыления, если к ней примешана часть пыльцы самого материнского производителя или других, близких ему и легко с ним скрещивающихся сортов. И. В. Мичурин, разработавший и предложивший данный прием, полагал, что примешиваемая пыльца возбуждает пестик и тем самым способствует акту оплодотворения между чужеродными половыми клетками. С этой же целью можно применять смесь пыльцы отдаленных видов или родов.
Исходя из практических результатов применения метода смеси пыльцы, Т. Д. Лысенко высказывает предположение о том, что между различными сортами пыльцы, находящейся на рыльце цветка, и яйцеклеткой материнского растения идет обмен веществ, приводящий к скрещиванию. Кроме того, в результате взаимовлияния пыльцы нескольких форм создается физиологически новая среда, способствующая восприятию пыльцы одного из отдаленных видов или родов.
При подмешивании к чужеродной пыльце пыльцы материнской формы или близкородственных сортов, может произойти самоопыление или межсортовое скрещивание, а не отдаленная гибридизация. В целях предупреждения нежелательного скрещивания можно испытать прием подмешивания обеспложенной тем или иным способом пыльцы материнского растения и легко скрещивающихся с ним сортов, учитывая, что акту оплодотворения могут способствовать специфические ароматические вещества, содержащиеся в добавляемых пыльцевых зернах.Нанесение кусочков или прививка рылец отцовской формы к столбикам цветков материнского растения и укорачивание столбиков в цветках материнского растенияЭти приемы также разработаны и предложены И. В. Мичуриным для улучшения условий прорастания пыльцы и внедрения пыльцевых трубок отцовского сорта в ткань пестика чуждого ему вида или рода. Производятся они утром, в тихую погоду, чтобы избежать подсушивания тканей. При нанесении кусочков или прививке рылец, как отмечал И. В.Мичурин, оплодотворению способствует не столько сама ткань рылец отцовского производителя, сколько специфический запах выделяемого ею секрета, который обеспечивает прорастание пыльцы и внедрение пыльцевых трубок р чужеродный столбик.
В некоторых случаях (при несоответствии длины столбиков материнского и отцовского производителей) для получения соответствующего эффекта достаточно лишь укоротить столбики пестиков материнского растения. Этим путем, например, И. А. Толмачев добился скрещивания смородины Кран-даль с крыжовником.Метод предварительного проращивания пыльцы отцовского производителя в вытяжке их рылец того же растенияДанный прием успешно применен О. Ф. Мизгиревой при межродовом скрещивании перца с мандрагорой туркменской. Для проращивания пыльцы мандрагоры, непосредственно не прораставшей на рыльцах цветков перца, готовилась специальная среда из растертых рылец мандрагоры и нескольких капель 10—15-процентного раствора сахарозы. В эту смесь высыпалась пыльца мандрагоры, а через 2—3 часа, уже в проросшем состоянии, наносилась на рыльца кастрированных цветков перца.Опыление возрастно старых цветковЭтот способ преодоления нескрещиваемости предложен А. Я. Кузьминым. Принимая во внимание известное положение об избирательности оплодотворения растений, он полагает, что указанное свойство зависит не только от природы и возраста материнского растения, но также и от возраста каждого цветка.Наибольшей избирательностью обладает цветок в полном расцвете, а наименьшей — молодой формирующийся цветок и цветок дряхлый, находящийся в состоянии отцветания. Возрастно старый цветок, оставшийся неоплодотворенным пыльцой близкородственных растений, иногда оказывается способным принимать пыльцу отдаленного родича.
Используя этот метод, А. Я. Кузьмин добился успеха при скрещивании красной и черной смородины, малины и ежевики, смородины и крыжовника.
Практика показывает, что даже при успешном преодолении нескрещиваемости далеких по родству растений в отдельных случаях получаются уродливые, не дающие всходов семена, а иногда из жизнеспособных семян вырастают бесплодные сеянцы. В последующее время при повторном проведении гибридизации тех же растений могут быть получены более качественные семена. Преодолеть бесплодие отдаленных гибридов, иногда можно с помощью менторов — родительских форм.
Все этапы работы по скрещиванию фиксируются в полевых журналах гибридизации (табл. 3).
Поскольку пергаментные изоляторы ухудшают условия развития гибридных гроздей, во время первой ревизии (проверки результатов скрещивания), т. е. через 10—15 дней после опыления, их заменяют марлевыми мешочками.

44.Бесплодия отдаленных гибридов, его причины и способы преодоления. Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридовмежду ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентными он назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

45. Понятие об аутбридинте система самонесовместимости у растений. Аутбридинг скрещивание неродственных организмов, в том числе и принадлежащих к разным породам (сортам) и даже видам. В более узком смысле А. — система, включающая различные приёмы подбора для спаривания животных одной породы, не имеющих общих предков в 4—6 поколениях. А. используют для предотвращения вредных последствий, возникающих при длительном близкородственном разведении (Инбридинге), и для других целей.

САМОНЕСОВМЕСТИМОСТЬ — неспособность растений производить семена при самоопылении. Явление впервые было описано Й. Кёльрёйтером в середине XVIII в. у Verbascum pheoniceum (коровяк). Оно генетически детерминировано. Детерминация осуществляется либо со стороны спорофита (рыльца пестика материнского растения), либо со стороны гаметофита (пыльцевого зерна). В систему контроля самонесовместимости у разных растений входит различное количество аллельных генов. Они могут занимать либо один локус, (табак, петуния, клевер, традесканция и др.), либо два (свекла, лютик, мак, рожь, ячмень и др.). Локус самонесовместимости обозначается буквой S (self-incompatibility), а аллели этого локуса — S1, S2, S3 и т.д. Продуктами S-генов являются гликопротеины, которые регулируют процесс прорастания пыльцы.

Аутбридинг — один из методов разведения, представляющий собой, в отличие от инбридинга, неродственное скрещивание. Аутбридинг — относительно простой и надежный метод разведения, так как от поколения к поколению ожидается получение стабильных по продуктивности потомков, то есть, нет рекомбинантных потерь из-за провалов в уровне продуктивности. Аутбридинг – наиболее часто применяемый метод разведения у всех видов животных и во всех породах. Его применение было предпосылкой для создания примерно в 1850 году современных пород сельскохозяйственных животных из разнообразия местных пород, наряду использованием таких методов разведение как прилитие крови, поглощение и комбинирование для достижения этими породами сегодняшнего уровня продуктивности. Одновременно с началом использования чистопородного разведения стали образовываться племенные объединения заводчиков, и началось ведение племенных книг, называемые также «студбуки», в которых систематически описываются животные одной популяции. Поэтому аутбридинг в практическом животноводстве называют также разведение по племенной книге.

Читайте также:  Нарушение менструального цикла при бесплодие

Дата добавления: 2015-04-18 ; просмотров: 209 ; Нарушение авторских прав

источник

Название Селекция как наука и отрасль с х. производства
Анкор шпоры по селекции 2012 год.docx
Дата 05.05.2017
Размер 229.79 Kb.
Формат файла
Имя файла шпоры по селекции 2012 год.docx
Тип Документы
#7099
страница 3 из 11

21. Методы преодоления нескрещиваемости отдалённых видов и родов. Преодоление нескрещиваемости генетически далёких видов. В основе всех причин нескрещиваемости лежит генетическая дифференциация видов, их генетическая изоляция, которые выражаются в несовместимости генотипов видов. Существуют генетическое, физиологическое и структурное несоответствия гамет отдалённых форм. Степень скрещиваемости в значительной мере определяется филогенетическим родством скрещиваемых форм. В связи с этим выделяют две основные причины трудной скрещиваемости при отдалённой гибридизации:

а) Препятствия к опылению и оплодотворению: несовпадение циклов размножения (несовпадение циклов развития гамет), несовместимость пыльцевых трубок с тканью пестика, генетическая несовместимость ядер, несущих разные геномы (несовместимость яйцеклеток и спермиев), физиологическая несовместимость ядра и цитоплазмы.

б) Нежизнеспособность (бесплодие) или малая жизнеспособность (низкая плодовитость) гибридной зиготы (зародыша).

И.В. Мичуриным и другими исследователями были предложены следующие методы преодоления нескрещиваемости:

– Предварительная прививка. Прививка одного растения на другое изменяет химический состав тканей, осмотическое давление в клетках и т.д. Это увеличивает вероятность прорастания чужих пыльцевых трубок в пестике материнского растения. Например, пшенично-элимусные гибриды были получены путём предварительной пересадки зародыша пшеницы на эндосперм элимуса.

– Метод посредника (метод мостов) состоит в том, что нескрещиваемость двух видов преодолевается с помощью третьего вида. Если виды А и В не скрещиваются между собой, то вид А скрещивают с близким видом С, а полученный гибрид – с видом В. В результате в гибриде могут быть совмещены хромосомы и признаки трёх видов. Данный метод нашёл применение в селекции картофеля, пшеницы, овса и других культур. И.В. Мичурин при скрещивании персика с бобовником использовал в качестве посредника дальневосточный персик Давида Диплоидные виды овса A. strigosa и A. pilosa не скрещиваются между собой, но успешно гибридизируются с A. longiglumis. Гибриды между данными диплоидными видами и A. Longiglumis легко скрещиваются между собой.

– Опыление смесью пыльцы разных видов также повышает скрещиваемость за счёт того, что пыльца, имеющая разный генотип, может взаимно стимулировать рост составных частей её, создавая в пестике условия, благоприятные для прорастания разной пыльцы. В данном случае используют смесь пыльцы различных биотипов. Подобные явления происходят при использовании таких приёмов, как повторное опыление и доопыление материнской пыльцой.

– Использование разных биотипов. При получении гибридов Raphanobrassica завязываемость семян при скрещивании редьки масличной с сортом кормовой капусты Синий гигант была в 7–10 раз выше, чем от скрещивания с сортом капусты Мозговая зелёная вологодская.

– Изменение уровня плоидности у родительских форм. Перевод скрещиваемых видов на тетраплоидный уровень способствует получению гибридных семян, что свидетельствует об изменении селективности оплодотворения.

– Предварительное воздействие на скрещиваемые растения химическими и физическими факторами – радиацией, химическими мутагенами, биологически активными веществами, стрессовыми условиями выращивания. Применение стероидных глюкозидов при межвидовой гибридизации томатов приводило к повышению завязываемости гибридных семян. Обработка пестиков стимуляторами роста и другими химическими веществами позволяет изменить активность ферментов, рН среды в пестике в период оплодотворения. Например, в СИММИТе (Мексика) для преодоления генетической несовместимости исходных родительских форм применяют обработку родительских растений в период формирования у них генеративных органов 0,1%-ным раствором эпсилон-амино-капроновой кислоты (опрыскиванием или инъекцией). Таким путём удалось скрестить пшеницу с ячменём.

– Перенос скрещиваемых форм в другие экологические условия. На скрещиваемость видов в сильной степени влияет различное физиологическое состояние генеративных органов растений, которое зависит от факторов внешней среды. Преодоления фенотипической несовместимости видов иногда можно добиться путём переноса скрещиваемых растений в иные экологические условия. Например, в Закавказье скрещивание между разными видами пшеницы происходит значительно легче, чем в другой зоне.

– Использование метода гибридизации соматических клеток (парасексуальная гибридизация) путём слияния изолированных протопластов. Таким путём можно получать, например, ЦМС аналоги культурных растений, без применения насыщающих скрещиваний. Гены цитоплазмы кодируют ряд признаков, представляющих практический интерес (ЦМС, скорость фотосинтеза, устойчивость к патогенам и абиотическим факторам). С помощью соматической гибридизации возможно получение цибридов, совмещающих пластомы двух видов. Путём соматической гибридизации получены гибриды картофеля с томатом, капусты с турнепсом, культурного картофеля с диким и др. Кроме рассмотренных методов для преодоления нескрещиваемости в селекции используют культивирование на питательной среде вычлененных семяпочек, проводят опыление на ранних этапах развития рыльца, укорачивают столбик или удаляют рыльце перед опылением с заменой его кусочком питательной смеси и т. д.
22. Методы преодоления невсхожести гибридных семян и стерильности отдалённых гибридов. Преодоление неспособности гибридных семян к прорастанию осуществляется путём применения метода культуры зародышей и тканей в стерильных условиях. Эндосперм является как бы промежуточным звеном между зародышем и материнским растением. Он несёт ответственность за отклонения в развитии гибридных зёрен. Поэтому различные нарушения в развитии эндосперма (замедленное формирование клеток, образование гигантских ядер, нарушения в образовании хлорофиллоносного слоя и клеток перикарпия и др.) отрицательно влияют на гибридный зародыш. Метод культуры зародышей широко используют, например, при получении пшенично-элимусных гибридов. Во многих случаях прорастанию зародышей способствуют применение биологически активных веществ и создание определённых условий для прохождения длительного покоя (приём часто применяют для семян с твёрдой оболочкой). Для определения степени жизнеспособности гибридных семян индийскими селекционерами разработан рентгеноскопический метод анализа, позволяющий отделять здоровые семена от недоразвитых и пустых.

3) преодоление стерильности (бесплодия) гибридов первого поколения. Как правило, чем дальше в филогенетическом отношении отстоят друг от друга скрещиваемые формы, тем сильнее выражена стерильность их гибридов. Стерильность гибридов F1 вызывается следующими причинами: а) недоразвитием генеративных органов (чаще всего пыльников); б) абортивностью зародыша из-за несоответствия зиготы и эндосперма; в) нарушениями в мейозе и митозе, приводящими к появлению нежизнеспособной пыльцы и аномальных яйцеклеток. Нарушения в мейозе и митозе вызываются:

– Различиями в структуре, числе хромосом и генных наборов у скрещиваемых форм, т.е. несовместимостью геномов, хромосом и отдельных генов, следствием чего является нарушение конъюгации хромосом в мейозе (асинапсис, десинапсис, образование унивалентов). Хромосомная стерильность наблюдается, например, у пшенично-элимусных, пшенично-ржаных, ржано-пырейных и других гибридов.

– Несовместимостью ядра и цитоплазмы у родительских форм, что приводит к нарушению митотического деления клеток в процессе образования генеративных органов, что проявляется в стерильности пыльцы гибридных растений. Действие отдельных генов препятствует развитию мужских и женских органов цветка. Проростки могут гибнуть на ранней стадии их развития.

– геномной аллоциклией, которая вызывается различиями в темпах деления хромосом исходных видов. Так, у мягкой пшеницы темп деления хромосом 24 ч, твёрдой – 30 ч, ржи – 51, тритикале – 34–37 ч. Поэтому у тритикале часто происходит потеря хромосом ржи. На проявление геномной аллоциклии влияет цитоплазма материнского растения и условия выращивания. Разработаны следующие методы преодоления стерильности (восстановления плодовитости) гибридов F1:

– Метод последовательных насыщающих (возвратных) скрещиваний, который позволяет восстановить хромосомный набор одного из родителей, но с новым сочетанием генов. Применение возвратных скрещиваний основано на том, что женские гаметы гибрида обычно обладают большей жизнеспособностью, чем мужские. Для опыления гибрида используют нормальную пыльцу одной из родительских форм. Гибриды первого поколения можно также опылять пыльцой третьего родственного вида, например: (рожь х пшеница) х пырей; (рожь х пырей) х пшеница; (пшеница х пырей) х рожь.

– Удвоение числа хромосом у гибридов F1 с помощью колхицина, или получение амфидиплоидов. Амфидиплоиды (аллотетраплоиды) – полиплоиды, возникающие в результате соединения и последующего удвоения хромосомных наборов двух разных видов или родов (ААВВ). Диплоид АВ от скрещивания АА х ВВ отличается полной стерильностью (например, пшенично-ржаные амфидиплоиды – тритикале). При удвоении числа хромосом каждая хромосома имеет гомологичную хромосому, в результате чего конъюгация протекает нормально и плодовитость гибридов восстанавливается. Увеличить количество завязавшихся семян на гибридном растении можно путём создания благоприятных условий для формирования генеративных органов (во время цветения), с помощью вегетативного размножения, например клонирования злаков и других растений, путём обработки физиологически активными веществами и др.

23. Пути передачи признаков при отдалённой гибридизации. Возможность передачи генов от одного вида другому зависит от филогенетической близости скрещиваемых форм. Выделяют пять основных методов межвидовой передачи признаков:

1. Генетическая рекомбинация на основе кроссинговера. При большой геномной близости скрещиваемых видов работа с гибридными поколениями ведётся в основном также, как и при межсортовой гибридизации, и опирается на генетическую рекомбинацию. Селекционер в большинстве случаев ставит задачу передать культурному растению от второго вида лишь отдельный ген или признак, например устойчивость к какой-нибудь болезни. Наиболее эффективный метод для достижения этой цели – возвратные скрещивания. В итоге получают интрогрессивную форму исходного сорта, включающую от второго вида лишь единичные признаки. Например, Н.В. Цицин вывел ценные сорта пшеницы от скрещивания с пыреем. М.Ф. Терновский путём передачи культурному табаку генов устойчивости от вида N. glutinosa L. получил иммунные к табачной мозаике и мучнистой росе сорта: Американ 187-С, Дюбек 566, Иммунный 580 и др. При нарушении конъюгации хромосом в мейозе у гибридов передать отдельные признаки от одного вида другому трудно.

2. Синтез амфидиплоидов. Амфидиплоиды получают двумя путями: 1) проводят гибридизацию с последующим удвоением числа хромосом у гибрида, 2) скрещивают предварительно полученные автотетраплоиды исходных видов. Амфидиплоиды могут быть использованы главным образом как исходный материал для селекции. Известны только единичные случаи, когда амфидиплоиды непосредственно используются для практических целей. Например, большое число работ выполнено по пшенично-ржаным амфидиплоидам – тритикале.

3. Добавление и замещение хромосом. Если передачу отдельных генов путём генетической рекомбинации трудно осуществить, то в генотип улучшаемой культуры добавляют отдельную пару хромосом с нужными селекционеру генами от вида-донора. Методика получения линий с добавленными хромосомами описана О’Мара (O’Mara, 1940) на примере получения линий пшеницы с добавленными хромосомами ржи. Линии с добавочными хромосомами получают, осуществляя последовательно следующие процедуры: 1) скрещивают растения разных видов; 2) удваивают число хромосом у гибридов F1; 3) проводят возвратные скрещивания полученного амфидиплоида с рекуррентным родителем (улучшаемый сорт); 4) проводят отбор линий с добавочными хромосомами.

К настоящему времени имеются дополненные линии мягкой и твёрдой пшеницы с парой хромосом от следующих видов: Secale cereale, Aegilops caudata, Ae. umbellulata, Ae. comosa, Agropyron elongatum, Agr. intermedium, Haynaldia villosa. Серия дополненных линий получена также у овса (Avena sativa). В каждой линии к хромосомам овса добавлено по одной хромосоме Avena hirtula. Линии с замещёнными хромосомами получают различными путями, обычно методом возвратных скрещиваний, используя в качестве родителя-донора линию с добавленной парой хромосом от другого вида, а в качестве рекуррентного родителя – линии моносомика или нуллисомика. В настоящее время созданы линии, в которых пара хромосом пшеницы замещена парой хромосом видов Secale cereale, Aegilops comosa, Ae. ventricosa, Agropyron intermedium, Agr. elongatum. У табака были использованы хромосомы Nicotiana glutinosa и N. plumbaginifolia для замещения хромосом N. tabacum с целью передать этому виду устойчивость к табачной мозаике.

Возможны замещения не только пары хромосом, но и отдельных хромосом. Например, Р. Райли передал пшенице мягкой от эгилопса одну хромосому, контролирующую устойчивость к жёлтой ржавчине.

Успех использования дополненных и замещённых линий, также как и амфидиплоидов, зависит от их стабильности и озернённости. К сожалению, все полученные дополненные линии цитологически не стабильны, по-видимому, из-за нарушения сбалансированности функций генов. Наблюдается утеря пары добавленных хромосом и возврат к 42-хромосомным пшеницам. Замещение отдельных хромосом даёт лучший эффект, чем добавление чужой хромосомы, поскольку генотип в данном случае более сбалансирован, однако эти линии часто маложизнеспособны, т. к. чужая хромосома может не компенсировать отсутствующую хромосому.

4. Индуцированные переносы сегментов хромосом одного вида в другой. Для переноса фрагментов хромосом одного вида в хромосомы другого вида используют транслокации типа вставок, т. е. небольшой участок чужеродной хромосомы дикого вида с нужным геном перемещается в хромосому культурного вида. Этот тип транслокаций наиболее редкий, так как для его осуществления необходимы два разрыва в одном плече хромосомы. Для индуцирования транслокаций применяют ионизирующие излучения. В настоящее время получены транслокации между хромосомами пшеницы и других злаков. Например, в Кембридже получены транслокации, включающие II и III хромосомы ржи. Хромосома III несёт в длинном плече ген устойчивости к жёлтой ржавчине и мучнистой росе, а хромосома II – ген, ответственный за устойчивость к мучнистой росе. В 1955–1956 гг. Э. Сирсом получена вставка участка хромосомы Aegilops umbellulata в одну из хромосом пшеницы. Гомозиготные по этой транслокации растения отличались устойчивостью к стеблевой и бурой ржавчинам и более поздним созреванием. Так была получена линия под названием «Трансфер», которая используется сейчас в селекции. Новые возможности для обмена сегментами хромосом у пшеницы при отдалённой гибридизации открываются в связи с установлением того факта, что хромосома 5В несёт ген или гены, эффективно ограничивающие межгеномную конъюгацию. В 1970 г. Моррис и Сирс описали технику переноса желательных генов из других видов или родов в хромосомы пшеницы на основе использования нуллисомических по хромосоме 5В растений. 5. Перенос геномов одного вида в цитоплазму другого. Путём переноса генома одного вида в цитоплазму другого получают формы с ЦМС. Это позволяет использовать эффект гетерозиса гибридов F1 у ряда культур. Например, японский генетик Х. Кихара в 1951 г. получил мягкую пшеницу с ЦМС путём переноса её геномов в цитоплазму Эгилопса. Таким образом, использование отдалённой гибридизации в сочетании с современными цитогенетическими методами может быть перспективным для передачи отдельных полезных признаков от диких форм культурным растениям.
24 основные трудности препятствующие выявлению хозяйственно-ценных генотипов элитных раст при проведении отбора . Селекционный отбор основан на следующих общих принципах:

1. Популяция исходного материала должна быть достаточно многочисленной (от 10 до 20 тыс. особей), чтобы обеспечить генетическое разнообразие. При увеличении размера популяции повышается вероятность отбора ценных генотипов.

2. Отбор элитных растений из исходного материала проводят на основе запланированных критериев отбора в течение всей вегетации. Окончательно элитные растения отбирают по сумме всех критериев отбора после их проявления.

3. Число элитных растений, которое следует отбирать, определяется запланированной интенсивностью отбора. Хороший результат (сдвига при отборе) получают, если отбирают около 10% особей исходной популяции или меньше.

4. Надёжность проверки результата отбора на втором этапе (испытание потомств элитных растений) зависит от точности полевого опыта. Первое потомство испытывают без повторности (так как мало семян), через 10–40 делянок высевают стандартный сорт (районированный в данной местности сорт, широко возделываемый в производстве) или исходную популяцию. Результаты отбора при испытании первого потомства проверяют только по моногенно обусловленным признакам (устойчивость к болезням) или признакам с высокой наследуемостью. Высокий коэффициент наследуемости у зерновых культур имеют такие признаки, как высота растений, длина колоса, масса одного зерна. Потомства с явно низкой урожайностью или восприимчивые к болезням бракуются. На основании испытания первого потомства элитных растений опять отбирают около 10% наилучших линий или семей.

5. Оценку второго поколения потомств проводят в точном полевом опыте с повторностями. Теперь результат отбора можно проверить по урожайности и другим признакам с низкой и средней наследуемостью. Из этих потомств отбирают опять около 10% наиболее продуктивных.

6. Площадь делянок и число повторностей в каждом последующем испытании увеличивается, а число потомств вследствие отбора уменьшается. Испытание прекращают, когда можно указать потомства, наилучшим образом отвечающие задачам селекции. Как правило, проводят три испытания потомств, из которых два последних – в местах будущего распространения создаваемых сортов.

25 планирование отбора , селекционный дифференциал , р-ция на отбор , коэффициент наследуемости.

При условии промежуточного наследования, частичного или полного доминирования эффект отбора количественным признакам зависит от его интенсивности и силы модифицирующего влияния внешней среды.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *