Меню Рубрики

Диплоидная вакцина от бешенства

Расстановка ударений: АНТИРАБИ`ЧЕСКИЕ ПРИВИ`ВКИ

АНТИРАБИЧЕСКИЕ ПРИВИВКИ (греч. anti- против + лат. rabies бешенство; син. пастеровские прививки) — введение специфических препаратов (вакцины, сыворотки, гамма-глобулина) для профилактики бешенства.

Метод лечебно-профилактических прививок против бешенства (см.) был предложен в 1885 г. Луи Пастером (см.), создавшим первую антирабическую вакцину. В основу метода был положен принцип многократного повторного введения приготовленной из мозга кролика вакцины, содержащей возрастающие количества живого, так наз. фиксированного вируса бешенства, вызывавшего развитие заболевания у экспериментальных животных (кроликов) через строго определенный интервал времени после их заражения.

Инактивация вируса достигалась высушиванием кусочков мозга зараженных кроликов над едким кали в течение различного периода времени (от 1 до 16 сут.). Прививки начинались с введения мозговой суспензии вируса, утратившего вирулентность, и последующего ежедневного введения вакцины, содержавшей возрастающие количества живого вируса. Эффективность метода была проверена на собаках.

6 июля 1885 г. Пастер впервые начал курс прививок 9-летнему ребенку, искусанному бешеной собакой. Лечение было начато через 60 час. после укусов и продолжалось в течение 10 дней, за это время сделано 13 прививок. Прививки были начаты с введения суспензии мозга кролика (16-дневной сушки), не содержащей живого вируса, и закончены введением вирулентного вируса (мозг однодневной сушки). Ребенок остался жив. Вскоре пастеровские прививки получили широкое признание. Через год в России была открыта вторая после французской пастеровская станция (см. Пастеровские станции, пункты).

Вслед за открытием Пастера были предложены различные методы прививок, отличавшиеся от пастеровских более совершенной технологией приготовления антирабических вакцин. Наиболее короткий курс вакцинации (не более 6 дней) с повторными инъекциями вакцины в течение одного дня был связан с применением эфирных вакцин (метод Хемпта, 1925). Схемы А. п., и в том числе при применении вакцины Пастера, многократно модифицировались по причине недостаточно высокой эффективности в случаях массивного инфицирования (множественные укусы, особенно в голову).

Повысить эффективность А. п. удалось в 50-х годах 20 в., когда был разработан метод комбинированного лечения — введение очищенной и концентрированной гипериммунной антирабической сыворотки или ее глобулиновой фракции, полученной из сыворотки крови животных разных видов (чаще лошади) с последующим курсом прививок антирабической вакциной. В СССР применяется антирабический гамма-глобулин, приготовленный из сыворотки лошади.

А. п. при наличии показаний назначаются врачом всем лицам независимо от возраста и начинаются немедленно. Продолжительность курса прививок, суточная доза вакцины определяются совокупностью ряда факторов: состоянием покусавшего животного, тяжестью и локализацией нанесенного повреждения, возрастом пострадавшего, эпизоотической обстановкой.

Полный курс прививок по безусловным показаниям назначают при укусах, царапинах, ослюнении слизистых и кожных покровов явно бешеным или подозрительным на бешенство животным, а также внешне здоровыми животными, за судьбой к-рых нельзя проследить (дикие животные, бродячие собаки и кошки). Это обусловлено тем, что в слюне животных вирус бешенства обнаруживается за 3 сут. до развития заболевания. Прививки проводят также при ослюнении и повреждениях, нанесенных человеком, страдающим гидрофобией, при ранении предметами, загрязненными слюной больных бешенством, трупным материалом погибших от бешенства животных и людей.

Основным критерием при определении курса прививок в указанных случаях является тяжесть укуса и его локализация. При множественных укусах тела, при любых укусах наиболее опасной локализации (лицо, голова, шея, пальцы рук), ослюнении поврежденных слизистых оболочек, при любых укусах, нанесенных дикими плотоядными животными (волки, лисы, шакалы и др.), назначают комбинированные прививки — однократное введение антирабической сыворотки или гамма-глобулина с последующим курсом прививок антирабической вакциной. Антирабический гамма-глобулин вводят в ягодичные мышцы после предварительной проверки чувствительности пострадавшего к белкам сыворотки лошади и десенсибилизации организма. Доза гамма-глобулина 0,25-0,5 мл на 1 кг веса тела. В СССР принят курс, предусматривающий ежедневные прививки 5% мозговой вакциной продолжительностью не более 25 дней с 2-3 ревакцинациями с интервалом в 10 дней после окончания основного курса. Суточная доза вакцины для взрослого человека составляет 5 мл, вводится она в подкожную клетчатку живота по 2,5 мл с интервалом в 30 мин. Эти комплексные А. п. при массивном инфицировании применяются во всех странах, с той лишь разницей, что общая продолжительность основного курса прививок и суточная доза вакцины при применении вакцин разных типов варьируют. При легких одиночных укусах любой части тела (кроме лица, головы, шеи, кистей рук), при ослюнении неповрежденных слизистых оболочек, поврежденной и неповрежденной кожи применяется только курс вакцинации продолжительностью не более 20 дней с суточной дозой вакцины, равной 2-3 мл.

При множественных укусах, укусах в голову, лицо, пальцы рук внешне здоровыми известными животными назначают условный курс прививок, вводят только антирабический гамма-глобулин (0,25 мл на 1 кг веса тела) или антирабическую вакцину (5 мл в течение 3-4 дней). За животным устанавливают 10-дневное ветеринарное наблюдение. При заведомо неблагоприятной ситуации (укус не спровоцирован, животное не привито, местность эпизоотически неблагополучна по бешенству) условный курс прививок может быть проведен и при более легких укусах. Если животное остается здоровым в течение 10 дней, то курс прививок не продолжают. Если же животное заболеет бешенством, исчезнет или погибнет от неизвестных причин, прививки продолжают, а в случаях, где их назначение не предусматривалось в момент контакта с животным, немедленно назначается полный курс.

Детям назначается меньшая, чем взрослым, доза вакцины. Курс прививок по безусловным показаниям лицам с тяжелыми укусами, лицам с аллергическими заболеваниями и заболеваниями ц. и. с., грудным детям, беременным женщинам проводят в условиях стационара.

Во время проведения прививок и после их окончания необходимо соблюдать определенный режим: категорически запрещено употреблять спиртные напитки, следует избегать переутомления, перегревания, охлаждения; лечебные сыворотки (кроме противостолбнячной) могут быть назначены только по витальным показаниям.

При введении антирабических вакцин наряду с местной воспалительной кожной реакцией в редких случаях может развиться шок, нейропаралитические осложнения (см. Поствакцинальные осложнения). При первых признаках поражения ц. н. с. прививаемого немедленно госпитализируют. При введении гетерологичных антирабических сывороточных препаратов анафилактоидные реакции наблюдаются в 15-20% случаев. В СССР и США разрабатывается ареактогенный препарат — антирабический иммуноглобулин из человеческой сыворотки, к-рый находится в стадии испытания.

А. п. в СССР проводятся в соответствии с существующим наставлением по применению антирабической вакцины и антирабического гамма-глобулина, где предусмотрены как курс прививок при поражениях различной тяжести, так и методы лечения поствакцинальных осложнений.

Профилактические прививки собакам и кошкам проводятся работниками ветеринарной службы; для поддержания напряженного иммунитета животных прививают ежегодно однократным введением вакцины. Такие прививки являются одной из действенных мер против заноса бешенства из природных очагов инфекции (от диких животных).

С целью индивидуальной защиты рекомендуются профилактические А. п. лабораторным работникам, работающим с уличным вирусом бешенства, ветеринарным работникам, лицам, ведущим отлов бродячих собак и кошек, и др.

В 1885 г. Луи Пастер и его сотрудники Шамберлан, Ру и Тюйе (C.Chamberland, Е. Roux, L. F. Thuillier) предложили использовать в качестве вакцинного штамма вариант возбудителя бешенства (адаптированный к ц. н. с. кроликов путем проведения 90 последовательных внутримозговых пассажей), к-рый был назван фиксированным вирусом.

В отличие от уличного вируса бешенства, фиксированный вирус с большим постоянством вызывал заболевание у кроликов при интрацеребральном введении после короткого инкубационного периода (7 дней), более активно размножался в мозге, почти утратил свои патогенные свойства при подкожном введении. Штамм Пастера был предоставлен различным странам для производства антирабических вакцин. В наст, время оригинальный штамм и особенно его ответвления (подштаммы) прошли многочисленные пассажи на кроликах. Подштаммы вируса Пастера претерпели нек-рые изменения биологических свойств, инкубационный период болезни у кроликов сократился до 4 сут., в антигенном отношении сохранилось единство с циркулирующим в природе уличным вирусом. С целью сохранения стабильных свойств штамма Пастера рекомендуется максимально сокращать число последовательных пассажей.

Для производства современных мозговых вакцин применяют оригинальный штамм Пастера и сходные с ним штаммы, фиксированные и поддерживаемые внутримозговыми пассажами на кроликах. Фиксированный вирус может храниться в лабораторных условиях в 50% нейтральном глицерине или в виде замороженной ИЛИ высушенной суспензии.

Вакцины готовят из мозга кроликов, молодых овец, коз, из мозга новорожденных белых мышей и кроликов. Считалось, что вакцины из мозга новорожденных животных не содержат так наз. энцефалитогенный фактор, являющийся одной из причин развития поствакцинальных неврологических осложнений. Вакцины из мозга новорожденных животных менее реактогенны, но их применение не исключает полностью возможности развития поствакцинальных осложнений.

Копровский и Кокс (Н. Koprowski, Н. Сох) в 1948 г. предложили новый вакцинный штамм «Флюри» («Flury»), фиксированный на однодневных цыплятах и адаптированный и модифицированный на тканях развивающегося куриного эмбриона. Существует две модификации штамма «Флюри» — штамм 40-50-го пассажа и штамм, прошедший 180 пассажей. Позже был предложен второй эмбриональный штамм — «Келев» («Kelev»). Штаммы поддерживают на куриных эмбрионах, зараженных в желточный мешок взвесью из ткани куриного зародыша, и используют для приготовления живых вакцин для профилактической вакцинации животных.

Пауэлл и Калбертсон (Н. Powell, С. Culbertson, 1950) адаптировали фиксированный вирус бешенства к тканям развивающегося утиного эмбриона заражением в желточный мешок.

Фенье (P. Fenje, 1960) путем чередующихся пассажей на белых мышах и культуре клеток почки сирийского хомяка адаптировал к этой культуре полученный им вариант фиксированного вируса — штамм «Сад» («Sad»), предложил его в качестве вакцинного вируса и показал возможность получения культуральной вакцины. В последующем штамм «Сад» был адаптирован к культуре клеток почек свиньи; он получил название — штамм «ЭРА» («ERA»). Вторым вариантом штамма «Сад» является штамм «Внуково-32», к-рый был получен в результате проведения Дополнительных пассажей в перинной культуре клеток почки сирийского хомяка при пониженной температуре культивирования — 32°. Известно несколько вакцинных штаммов, полученных на различных тканевых культурах животного происхождения, к-рые используются для получения культуральных вакцин, применяющихся в ветеринарной практике. Наиболее эффективной считают вакцину, приготовленную из штамма «ЭРА». В последние годы фиксированный вирус адаптирован к культуре диплоидных клеток человека (WI-38).

Культуральные вакцины для иммунизации людей разрабатываются и находятся в стадии внедрения. В СССР вакцину готовят в первичной культуре клеток почки сирийского хомяка, зараженной штаммом «Внуково-32». Наиболее перспективными считают очищенные и концентрированные культуральные вакцины, приготовленные на диплоидных клетках человека.

Все вакцины делят на два основных типа: живые и инактивированные. Любая вакцина может быть приготовлена в лиофилнзированной форме, что обеспечивает стабильность свойств препарата при длительном хранении. В мед. практике инактивированные препараты в связи с большей безопасностью их применения практически вытеснили живые вакцины.

Оригинальная вакцина Пастера. Вакцину готовят из спинного мозга кролика, забитого в агональном состоянии. Спинной мозг извлекают целиком в строго асептических условиях, разрезают на несколько частей и подвешивают в закрытых флаконах, на дне к-рых содержится едкий калий, поглощающий влагу. Высушивание в этих условиях в течение 2-14 дней сопровождается прогрессивно убывающим содержанием живого вируса до полной его инактивации. В 1891 г. метод модифицирован Кальметтом (A. Calmette). После 3-4-дневной сушки мозг помещали в сосуды с 20 мл нейтрального глицерина и стерилизовали в автоклаве при t° 120°, сохраняли в глицерине не более 40 дней и использовали для приготовления вакцины. Эта модификация применялась в институте Пастера с 1911 по 1952 г.

Вакцина Хедьеша [Е. (А.) Hogyes, 1887]. В качестве прививочного препарата вводили взвесь внруссодержащего мозга кролика, приготовленную ex tempore на физиологическом растворе в возрастающей концентрации от 1:10000 до 1:100 (так наз. дилюционный метод). Преимуществом метода автор считал более точную дозировку вируса во вводимом материале.

Антирабические вакцины, инактивированные действием химических агентов. Феноловые вакцины. Ферми (С. Fermi, 1908) предложил использовать фенол с целью инактивации фиксированного вируса. Автор показал, что воздействие небольших концентраций фенола при разных температурных режимах в течение различного времени на мозговую суспензию может инактивировать фиксированный вирус, не изменяя существенно его иммуногенную активность. В наст, время применяют вакцины, к-рые отличаются по температурному режиму инактивации и количественному содержанию фенола.

1.Вакцина Ферми. Готовят тщательно гомогенизированную суспензию мозга овцы, кролика на физиологическом растворе, содержащем 1% фенола, и выдерживают ее в термостате при t° 22° в течение 24 час. В конечном продукте содержится 5% мозговой взвеси и 0,5% фенола. В СССР применяются феноловые вакцины типа Ферми, приготовленные из мозга овец. Вирус инактивируют 1% фенолом при t° 22° в течение 14 дней. Выпускают только лиофилизированные препараты. Перед употреблением вакцину разводят в 3 мл растворителя. Готовый препарат содержит 5% суспензии мозгового вещества с небольшим количеством фенола (не более 0,25%), сахарозы, к-рую добавляют в качестве стабилизатора. Вакцина содержит небольшое количество живого вируса. Применяется также полностью инактированная фенолвакцина из мозга овец и фенолвакцина, полученная в первичной культуре клеток почки сирийского хомяка.

Читайте также:  С какого возраста можно делать прививку от бешенства котенку

2. Вакцина Семпла (D. Semple, 1917). По оригинальному методу готовилась 8% суспензия мозга кролика с 1% содержанием фенола, к-рую выдерживали в термостате 24 часа при t° 37°. Перед употреблением разводили в 2 раза физиологическим раствором. Конечный продукт содержал 4% мозгового вещества и 0,5% фенола.

В наст. время выпускают вакцины, приготовленные из мозга кролика, овец, коз, содержащие различное количество мозгового вещества и меньшее (по сравнению с оригинальным методом) количество фенола. Полная инактивация вируса достигается более длительной инкубацией мозговой суспензии в присутствии фенола при t° 20-30°. К вакцине добавляют 0,01% тиомерзала. При иммунизации вводят не менее 2 мл 5% мозговой суспензии.

Этеризованные, или эфирные, вакцины. Ремленже (R. Remlinger, 1919) впервые использовал эфир для инактивации фиксированного вируса. Хемпт (А. Hempt, 1925) модифицировал метод и предложил частично и полностью инактивированную вакцину. Головной мозг кролика сначала выдерживали в эфире в течение 90 час., спинной — 72 часа, а затем в фенолизированном глицерине (33% глицерина, 1% фенола) в течение 20 дней.

В наст. время этеризованные вакцины готовят из мозга овец. Кусочки мозга, обработанные эфиром, выдерживают в фенолизированном глицерине не менее полутора месяцев. По модификации Николича (M. Nikolic) мозг дополнительно инактивируют 48 часов в 1%формалине. Вакцину готовят на дистиллированной воде, обычно в виде 9-10% суспензии, содержащей 0,5% фенола.

Эмбриональная вакцина. Готовят 33% суспензию из ткани развивающегося утиного эмбриона, зараженного в желточный мешок, инактивируют бета-пропиолактоном. Вакцина менее реактогенна, но и менее пммуногенна сравнительно с мозговыми вакцинами. Бета-пропиолактон используют также для инактивации мозговых вакцин.

Антирабические вакцины, инактивированные физическими воздействиями. Бабеш и Пушкариу (V. Babes, Е. Puscariu) впервые предложили вакцину различной степени инактивации, что достигалось прогреванием 1% мозговой взвеси при t° 65-45°.

В наст. время с целью получения инактивированной вакцины применяют ультрафиолетовое облучение, к-рое вызывает мгновенную инактивацию вируса. Для производственных целей разработаны специальные приборы, к-рые обеспечивают непрерывный поток вируссодержащего материала в виде тонкой пленки и точную дозировку облучения. Инактивации может быть подвергнута суспензия, содержащая не более 10% ткани, предварительно профильтрованная через несколько слоев марли или проволочное сито. Если до употребления вакцину хранят в жидком состоянии, то добавляют консервант (тиомерзал в разведении 1:8000 или 0,25% фенол). Применяются облученные вакцины с различным содержанием мозгового вещества (1% вакцины из мозга новорожденных мышей, 5% — из мозга животных других видов).

Все выпускаемые серии вакцин проходят обязательный контроль на стерильность, безвредность, содержание живого вируса и иммуногенность. Сухие антирабические вакцины контролируются на остаточную влажность и растворимость.

Существует три основных стандартных метода определения иммуногенности вакцин: два теста Хейбла (K. Habel) и метод (NH) национальных институтов здравоохранения США; последний является наиболее точным, применяется в СССР. Определение нммуногенности вакцин по методу NH производится в сопоставлении с эталонной национальной или международной вакциной.

В ветеринарной практике для профилактической иммунизации животных широко применяются живые эмбриональные, живые культуральные вакцины, мозговые вакцины, инактивированные фенолом, бетапропиолактоном, ультрафиолетовым облучением.

Библиогр.: Комитет экспертов ВОЗ по бешенству, пер. с англ., Сер. техн. докл., № 321, ВОЗ, Женева, 1967; Пастер Л. Избранные труды, пер. с франц., т. 2, с. 690, М., 1960; Шен Р. М. Антирабические вакцины, в кн.: Профилактика инфекций живыми вакцинами, под ред. М. И. Соколова, с. 103, М., 1960; Abelseth M. K. An attenuated rabies vaccine for domestic animals produced in tissue culture, Canad. vet. J., v. 5, p. 279, 1964; он же, Propagation of rabies virus in pig kidney cell culture, ibid., p. 84; Fenje P. A rabies vaccine from hamster kidneyj. tissue cultures, Canad. J. Microbiol., v. 6, p. 605, 1960; Laboratory techniques in rabies, ed. by М. M. Kaplan a. H. Koprowski, WHO, Geneva, 1973.

  1. Большая медицинская энциклопедия. Том 2/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1975.- 608 с. с илл., 8 л. вкл.

источник

С 1990 г. рекомбинантная вакцина на основе вируса осповакцины в виде приманки из рыбной муки широко применялась в Бельгии и Франции. В Канаде с 1980 г. аналогичным образом иммунизируют красных лис живой вакциной ERA — ВНК. Отмечено наличие иммунитета у 74% лис. Для контроля бешенства диких животных в Европе и Северной Америке используют рекомбинантную вакцину VRG, которая содержала ген гликопротеина штамма ERA в тимидинкиназном гене вируса осповакцины. В дозе 108 ТЦД50 вакцина вызывала образование ВНА и выраженную защиту. Вакцина VRG не патогенна для 19 видов птиц и 35 видов млекопитающих. В 1988—1990 гг. 1 млн доз вакцины (приманок) было распределено на территории Бельгии и Франции. Вакцина VRG обладала выраженной эпизоотологической эффективностью при испытании в полевых условиях в Бельгии, Франции и США.

Хотя живые вакцины нашли широкое применение в ветеринарии, в настоящее время отмечается тенденция отдавать предпочтение инактивированным вакцинным препаратам, обладающим большой эффективностью и легкостью применения. С профилактической целью прививают сельскохозяйственных животных, наиболее часто поражаемых бешенством. Инактивированные вакцины лучше поддаются стандартизации. Минимальная антигенная доза составляет 0,3—1 ME. Если их применяют с адъювантом, они создают иммунитет такой же продолжительности, как и живые вакцины. Благодаря получению высокоактивного культурального вирусного сырья и концентрированию вирусных антигенов инактивированные вакцины последнего поколения стали превосходить живые антирабические вакцины. Например, получены вакцины с повышенной антигенностью, равной 3—5 ME в 1 дозе.

Антигенную активность живой (аттенуированный штамм ERA) и инактивированной вакцин сравнивали по титру ВН-антител на крупном рогатом скоте.

Вирус инактивировали БПЛ и добавляли ГОА и сапонин в качестве адъюванта. Живую вакцину вводили внутримышечго однократно в дозе 2 мл. У привитых однократно инактивированной вакциной титр ВН-антител через 6 и 10 мес. был выше, чем у привитых живой вакциной. Наиболее выраженная и продолжительная иммунологическая реакция отмечена в группе животных, привитых дважды инактивированной вакциной.

Фирма Мерье (Франция) изготовила и сравнила три варианта инактивированной вакцины: лиофилизированную без адъюванта (в основном для собак и кошек), жидкую с ГОА и сапонином (для жвачных и свиней) и жидкую только с ГОА (для пушных зверей). Концентрация вирусного антигена в вакцине в 10 раз превосходила минимально требуемый уровень. Испытание всех вариантов вакцины на лабораторных животных, собаках, кошках, крупном рогатом скоте, овцах, свиньях и лошадях показало, что в результате иммунизации у животных всех видов создается прочный иммунитет длительностью 1,5—3 года. Ее можно использовать в комбинации с противоящурной вакциной у крупного рогатого скота и свиней, противочумной и лептоспирозной — у собак и вакциной против панлейкопении у кошек.

Молодняк от вакцинированных матерей необходимо прививать с 3-месячного возраста. Вакцина сохраняла свою активность в течение трех лет при 5°С. Вакцина, хранившаяся 3 года, вызывала устойчивость к заражению вирулентным вирусом у 100% овец и кошек, а также у 97,4% собак. При заражении уличным вирусом двукратно вакцинированного крупного рогатого скота защита составляла 90—100%. Прививка КРС и овец смесью вакцин против бешенства и ящура давала такой же эффект, как и моновалентный препарат против бешенства. Для молодняка, родившегося от вакцинированных животных, необходима бустер-вакцинация в первые 12 мес.

Однократная вакцинация сопровождалась развитием иммунологической памяти, которая сохранялась не менее 16 мес. Устойчивость к заражению сочеталась с высоким титром ВН-антител. Вакцина из очищенного вируса, размножаемого в клетках Vero, после двукратного применения с интервалом 12 мес. вызывала напряженный иммунитет продолжительностью до пяти лет.

Пастеровский штамм вируса бешенства, выращенный в культуре клеток ВНК-21, инактивировали ДЭИ в щелочной среде. К одной части вакцины добавляли А1(ОН)3, другую использовали без адъюванта. Вакцину вводили крупному рогатому скоту подкожно в дозе 5 мл.

Через 1—2 года после прививки вакциной с адъювантом все животные были устойчивы к контрольному заражению, а через 3 года — 92%. Вакцина без адъюванта через 1 год защищала лишь 67% животных. Вакцина с адъювантом сохраняла иммуногенность при 4°С в течение 24 мес, при 25°С — 18 мес, при 37°С — 6 мес.

Штамм HEP-S AD (6,9—8,0 lg ТЦД50/мл) хорошо размножался в культуре псевдодиплоидной линии (NL-ST-1) клеток тестикул свиней. Моно- и комбинированные вакцины (против бешенства, ринотрахеита кошек, калицивируса кошек и панлейкемии) создавали у кошек напряженный иммунитет продолжительностью не менее 1 года.

Для изготовления инактивированной вакцины против бешенства приемлема технология, используемая при производстве противоящурнои вакцины в ряде развитых стран на основе суспензионного культивирования клеток ВНК-21.

Ведутся исследования по разработке рекомбинированных вакцин на основе нереплицирующихся векторов, экспрессирующих G белок вируса бешенства. Наиболее перспективным считается получение антигенного материала на основе векторов вирусов оспы птиц, абортивно реплицирующихся в культуре клеток млекопитающих. Такие рекомбинанты синтезируют на поверхности инфицированных клеток гликопротеин G вируса бешенства без образования потомства инфекционного вируса. Были созданы рекомбинанты вируса бешенства и вирусов оспы птиц и оспы канареек, которые экспрессировали гликопротеин G вируса бешенства под контролем промоторов вирусов оспы. Такие рекомбинанты индуцировали ВНА к вирусу бешенства у 6 видов млекопитающих (мыши, крысы, кролики, собаки, кошки и КРС). Иммунитет у всех вакцинированных (108 ТЦД50) мышей, собак и кошек установлен методом заражения высоковирулентным вирусом бешенства через 3 месяца после вакцинации. Полная защита у кошек и собак наступала после введения небольшой дозы вакцины, равной 105 ТЦД50. ИмД50 для кошек и собак соответственно была равна 3,3 и 4,19 lg ТЦД50. Такие рекомбинантные вакцины оказались неэффективными при оральном применении.

Профилактика бешенства у инфицированных людей заключается в применении гипериммунного глобулина и курса вакцинации. Иммунный глобулин против бешенства обычно применяют в дозе 20 UE/кг массы тела, половину вводят вокруг места укуса, половину — внутримышечно. В США и многих развитых странах используют две лицензированные адъювантные вакцины из вируса, размноженного в культуре диплоидных клеток (HDCV вакцина) и первичной культуре клеток почки обезьян резус (RVA вакцина). Вакцину в дозе 1 мл вводят внутримышечно в дельтоидную область 5 раз в следующие дни — 0, 3, 7, 14 и 28; если пациент был вакцинирован ранее, то иммунный глобулин не используют, а применяют двукратную вакцинацию в 0 и 3 дни. Эти режимы специфической профилактики сводят на нет смертность от бешенства.

Для лиц высокого риска рекомендованы три внутримышечные дозы культуральной вакцины с иммуногенной активностью не менее 2,5 IU в одной дозе, введенной в 0, 7 и 28 дней. Иммунитет у привитых контролируют каждые 6 месяцев по титру ВНА. Бустеризацию проводят при снижении титра ВНА ниже 0,5 Ш/мл. С лечебной целью используют культуральные вакцины или очищенные вакцины из вируса, размноженного в эмбрионах уток.

Иммунизация стандартными антирабическими вакцинами защищает человека и животных от заражения разными вирусами, родственными вирусу бешенства, но не вирусом Мокола.

источник

  • Что такое вакцина против бешенства (Imavax Rabies)?
  • Каковы возможные побочные эффекты вакцины против бешенства (Imovax Rabies)?
  • Какова самая важная информация, которую я должен знать о вакцине против бешенства (Imovax Rabies)?
  • Что я должен обсудить с поставщиком медицинских услуг, прежде чем принимать вакцину против бешенства (Imovax Rabies)?
  • Как предоставляется вакцина против бешенства (Imovax Rabies)?
  • Что произойдет, если я пропущу дозу (Imovax Rabies)?
  • Что произойдет, если я передозирую (Imovax Rabies)?
  • Чего следует избегать при получении вакцины против бешенства (Imovax Rabies)?
  • Какие другие препараты повлияют на вакцину против бешенства (Imovax Rabies)?
  • Где я могу получить дополнительную информацию (Imovax Rabies)?

Бешенство — серьезное заболевание, вызванное вирусом. Бешенство происходит главным образом у животных, но человек может получить бешенство после укуса зараженного животного. Сначала не может быть никаких симптомов, но недели или даже месяцы спустя бешенство может вызвать боль, головные боли, усталость, раздражительность, лихорадку, галлюцинации, судороги и паралич. Бешенство может быть смертельным.

Вы, скорее всего, подвергаетесь воздействию вируса бешенства, если вы ветеринар, проводник для животных, работник лаборатории бешенства или если вы вступаете в контакт с животными, которые могут переносить этот вирус (включая кошек, собак, лисиц, скунсов, енотов, бобков, койоты и летучие мыши). Путешествие в определенные страны также может увеличить риск заражения бешенством.

Ракейная диплоидная клеточная вакцина используется для защиты людей, которые были укушены животными (после воздействия) или иным образом может быть подвергнута воздействию вируса бешенства (предварительная экспозиция).

Эта вакцина работает, подвергая вас небольшой дозе вируса, что заставляет организм развивать иммунитет к этой болезни. Вакцина против бешенства используется для взрослых и детей.

Читайте также:  Можно ли заразиться бешенством если собака поцарапала

Как и любая вакцина, вакцина против бешенства может не обеспечивать защиту от болезней у каждого человека.

Получите неотложную медицинскую помощь, если у вас есть признаки аллергической реакции: ульи; затрудненное дыхание; отек лица, губ, языка или горла.

Вы не должны получать бустерную вакцину, если после первого выстрела у вас возникла угрожающая жизни аллергическая реакция.

Следите за всеми побочными эффектами, которые у вас есть после получения этой вакцины. Когда вы получаете бустерную дозу, вам нужно сообщить врачу, если предыдущий выстрел вызвал какие-либо побочные эффекты.

Стать инфицированным бешенством гораздо более опасно для вашего здоровья, чем получение этой вакцины. Однако, как и любое лекарство, эта вакцина может вызвать побочные эффекты, но риск серьезных побочных эффектов крайне низок.

Позвоните своему врачу сразу, если у вас есть редкие, но серьезные побочные эффекты, такие как:

  • очень высокая температура;
  • лихорадка, рвота, кожная сыпь, боль в суставах, общее плохое чувство;
  • покалывание или колючие ощущения в ваших пальцах или пальцах ног;
  • слабость или необычное чувство в ваших руках и ногах; или
  • проблемы с балансом или движением глаз, проблемы с разговором или глотания.

Общие побочные эффекты могут включать:

  • боль, отек, зуд или покраснение, когда был дан выстрел;
  • Головная боль;
  • головокружение;
  • боли в мышцах; или
  • тошнота, боль в желудке.

Это не полный список побочных эффектов, и другие могут возникнуть. Спросите у своего доктора о побочных эффектах. Вы можете сообщить о побочных эффектах вакцины в Департамент здравоохранения и социальных служб США по телефону 1-800-822-7967.

Вы не должны получать бустерную вакцину, если после первого выстрела у вас возникла угрожающая жизни аллергическая реакция.

Что я должен обсудить с поставщиком медицинских услуг, прежде чем принимать вакцину против бешенства (Imovax Rabies)?

Вы не должны получать эту вакцину, если у вас когда-либо была угрожающая жизни аллергическая реакция на вакцину против бешенства.

Прежде чем принимать эту вакцину, сообщите врачу, если у вас есть:

  • слабая иммунная система (вызванная болезнью или с использованием определенного лекарственного средства);
  • любой тип инфекции или тяжелая болезнь; или
  • аллергия на неомицин.

Неизвестно, повредит ли эта вакцина нерожденному ребенку. Однако, если вы подвергаетесь высокому риску заражения бешенством во время беременности, ваш врач должен определить, нужна ли вам эта вакцина.

Неизвестно, переходит ли эта вакцина в грудное молоко или может ли она повредить кормящемуся ребенку. Расскажите своему врачу, если вы кормите ребенка грудью.

Эта вакцина дается как инъекция (выстрел) в мышцу. Вы получите эту инъекцию в кабинете врача или в клинике.

Для предварительной профилактики бешенства вам нужно будет получить в общей сложности 3 выстрела. Второй снимок обычно дают через 7 дней после первого, а затем третий снимок через 2 или 3 недели.

Если у вас есть постоянный риск заражения бешенством, вам может потребоваться серия профилактических вакцин каждые 2 года. Если вы работаете с вирусом живой бешенства, например, в лаборатории или в зоне производства вакцины, вам может понадобиться вакцина против гриппа каждые 6 месяцев. Возможно, вам потребуются частые анализы крови, чтобы определить вашу потребность в дальнейшей профилактической вакцинации.

Для профилактики после воздействия после того, как вы были укушены или подвергнуты воздействию бешенства, вам необходимо будет получить в общей сложности 4 выстрела. Первый снимок дается как можно скорее, а остальные обычно даются на 3, 7 и 14 дни. С первого выстрела вы также можете получить отдельную инъекцию иммунного глобулина бешенства (im-YOON GLOB-yoo-lin), Эта инъекция вводится непосредственно в рану или травму укуса или вблизи нее, где вирус бешенства, вероятно, попал в ваше тело.

Для людей, которые получили вакцину против бешенства в прошлом: вам понадобится всего 2 инъекции вакцины против бешенства для профилактики после воздействия, разнесенных на 3 дня. Вам не понадобится иммунный глобулин.

Сроки этой вакцинации очень важны для ее эффективности. Ваш индивидуальный график бустеров может отличаться от этих рекомендаций. Следуйте инструкциям своего врача или расписанию, рекомендованному отделом здравоохранения штата, в котором вы живете.

Обязательно принимайте все рекомендованные дозы этой вакцины, или вы не можете быть полностью защищены от болезней.

Обратитесь к врачу за инструкциями, если вы пропустите бустерную дозу или если вы отстаете от графика.

Вероятно, передозировка вакцины против бешенства не произойдет.

Следуйте инструкциям своего врача о любых ограничениях на продукты питания, напитки или деятельность.

Прежде чем принимать эту вакцину, сообщите врачу обо всех других вакцинах, которые вы недавно получили.

Также сообщите врачу, если вы недавно получили наркотики или лечение, которые могут ослабить иммунную систему, в том числе:

  • пероральное, носовое, ингаляционное или инъекционное стероидное лекарство;
  • медицина для лечения или профилактики малярии;
  • химиотерапия или лучевая терапия;
  • лекарства для лечения псориаза, ревматоидного артрита или других аутоиммунных заболеваний; или
  • лекарства для лечения или предотвращения отторжения трансплантата органов.

Если вы используете какое-либо из этих лекарств, вы не сможете получить вакцину или, возможно, придется ждать, пока другие процедуры не будут закончены.

Этот список не является полным. Другие препараты могут взаимодействовать с этой вакциной, включая лекарства, отпускаемые по рецепту и без рецепта, витамины и растительные продукты. Не все возможные взаимодействия перечислены в данном руководстве по лекарствам.

Ваш врач или фармацевт может предоставить дополнительную информацию об этой вакцине. Дополнительную информацию можно получить в местном отделении здравоохранения или в Центрах по контролю и профилактике заболеваний.

Помните, держите это и все другие лекарства в недоступном для детей месте, никогда не делитесь своими лекарствами с другими и не используйте этот препарат только для указания.

Все усилия были направлены на то, чтобы информация, предоставленная Cerner Multum, Inc. («Multum»), была точной, актуальной и полной, но никаких гарантий в этом нет. Содержащаяся здесь информация о препарате может меняться с течением времени. Информация Multum была собрана для использования врачами-практиками здравоохранения и потребителями в Соединенных Штатах, и поэтому Multum не гарантирует, что использование за пределами Соединенных Штатов является подходящим, если специально не указано иное. Информация о препарате Мултума не поддерживает лекарства, диагностирует пациентов или рекомендует терапию. Информация о препарате Multum — это информационный ресурс, предназначенный для оказания помощи лицензированным врачам в уходе за пациентами и / или для обслуживания потребителей, рассматривающих эту услугу, в качестве дополнения к знаниям, навыкам, знаниям и суждениям практиков здравоохранения, а не их замену. Отсутствие предупреждения для данной комбинации лекарств или наркотиков никоим образом не должно толковаться как указание на то, что комбинация наркотиков или наркотиков является безопасной, эффективной или подходящей для любого данного пациента. Multum не несет никакой ответственности за какой-либо аспект здравоохранения, администрируемый с помощью информации, предоставляемой Multum. Информация, содержащаяся здесь, не предназначена для охвата всех возможных применений, направлений, мер предосторожности, предупреждений, взаимодействий с лекарственными средствами, аллергических реакций или побочных эффектов. Если у вас есть вопросы о препаратах, которые вы принимаете, проконсультируйтесь с вашим врачом, медсестрой или фармацевтом.

источник

Изобретение относится к области биотехнологии ветеринарных препаратов. Вакцина против вируса бешенства представляет собой аллантоисную жидкость куриных эмбрионов. Жидкость содержит гликопротеин вируса бешенства, а также смесь рекомбинантных аденовирусов птиц, несущих ген поверхностного гликопротеина вируса бешенства, один из которых содержит секретируемую форму поверхностного гликопротеина вируса бешенства, а второй — мембраннсвязанную. Взаимодействие гликопротеинов с организмом животных достигается путем перорального введения препарата. Изобретение может быть использовано в ветеринарии. 3 ил., 1 табл.

Бешенство — острое инфекционное заболевание зоонозного происхождения. Случаи бешенства диких, а также домашних животных регулярно регистрируются во многих странах, что представляет серьезную угрозу для населения. В ветеринарной практике широкое распространение получили живые и инактивированные цельновирионные вакцины на основе вакцинных штаммов вируса бешенства (Rabies, 2nd edition. Alan С.Jackson, William H.Wunner, 2007). Традиционные вакцины от бешенства получают из нервной ткани инфицированных животных. Применение таких вакцин нередко приводит к нежелательным побочным эффектам (полиневрит, энцефаломиелит), связанным с наличием примесей миелина в препарате (J. Postgrad Med. 1970 16(3): 132-4). Меньшей реактогенностью обладают вакцины на основе нервной ткани новорожденных животных (мыши, ягнята), что связано со слабым развитием миелиновой оболочки в нервной ткани таких животных. Однако данные вакцины небезопасны. Первыми вакцинами против бешенства, основанными не на нервной ткани, были вакцины, получаемые в утиных эмбрионах (Mil Med. 1964; 129:960-5). Эти вакцины вскоре были замещены современными культуральными вакцинами на основе диплоидных клеток человека, клеток Vero (Dev Biol Stand. 1981; 50:173-82), клеток почки новорожденных хомячков (Appl Microbiol. 1973 Dec; 26(6):858-62), куриных эмбриональных фибробластов (Monogr Ser World Health Organ. 1966; 23:124-31). Несмотря на эффективность использования живых аттенуированных штаммов вируса бешенства для вакцинопрофилактики, их применение связано с риском попадания в окружающую среду живого инфекционного вируса, поскольку не исключается возможность реверсии в вирулентную форму.

В настоящее время широко применяются культуральные вакцины, содержащие аттенуированные штаммы вируса бешенства, инактивированные различными химическими агентами (фенол, бета-пропиолактон) или физическими воздействиями (ультрафиолетовое излучение) (Jpn J Med Sci Biol. 1953; 6(6):577-86). Однако получение таких вакцин связано с необходимостью непосредственной работы с живым патогеном. Кроме того, проведение процесса аттенуирования вирулентного штамма с целью получения препарата, пригодного для массовой иммунизации, является кропотливой и рутинной работой, требующей затраты большого количества времени и средств.

Успехи в области клонирования и экспрессии генов привели к созданию рекомбинантных вакцин против бешенства, которые просты в изготовлении, устойчивы во внешней среде и индуцируют напряженный иммунитет. Применение рекомбинантного вируса исключает попадание во внешнюю среду потенциально опасного генома вакцинного вируса бешенства. Наиболее изученными и перспективными для использования в вакцинопрофилактике бешенства являются рекомбинантные вакцины на основе вируса коровьей оспы (Vaccine. 2009 27; 27(51):7198-201) и аденовирусов (Virology. 20065-20; 356(1-2):147-54).

Рекомбинантная вирусная вакцина от бешенства на основе вируса коровьей оспы, экспрессирующая гликопротеин вируса бешенства, используется для иммунизации животных в дикой природе (J. Wildl. Dis., 1998, 34, 752-763). Однако, контакт человека с вирусом коровьей оспы может сопровождаться серьезными побочными эффектами, что было показано при проведении массовой вакцинации солдат американской армии (Comp Immunol Microbiol Infect Dis, 2003, 26, 423-430).

Рекомбинантные аденовирусы по сравнению с другими векторными системами отличаются высокой эффективностью экспрессии целевого трансгена в различных типах клеток, безопасностью вектора для человека и животных, накоплением рекомбинантных вирусов в клетках-продуцентах в высоком титре, индукцией как гуморального, так и клеточного иммунного ответа на трансгенный продукт, большой пакующей емкостью вектора (Curr Top Microbiol Immunol. 2004, 273, 335-57). Рекомбинантные аденовирусы в качестве вакцины могут использоваться как для парэнтерального, так и для перорального введения.

Известен способ пероральной иммунизации мышей рекомбинантными репликативно-дефектными аденовирусами 5 (аденовирус человека) и 68 серотипа (аденовирус шимпанзе), несущими ген гликопротеина вируса бешенства (US Pat. 2004019603).

К недостаткам описанного способа относится высокая стоимость процесса получения необходимого для иммунизации количества препарата рекомбинантного аденовируса с использованием клеточной линии человека.

К наиболее безопасным среди современных вакцин относятся расщепленные сплит-вакцины, содержащие частицы вируса — изолированные поверхностные и внутренние белки. Изготавливается вакцина путем расщепления вирусных частиц при помощи органических растворителей или детергентов, также вирусные компоненты могут быть получены в лабораторных условиях с использованием генно-инженерной технологии (J Immunol. 1996 15; 156(10):3579-82). Расщепленные вакцины характеризуются значительно меньшим риском побочных реакций, в связи с удалением реактогенных липидов, входящих в состав оболочки вируса. Поскольку выработка вируснейтрализующих антител против бешенства идет на поверхностный гликопротеин, данный структурный компонент используется для создания ресщепленных вакцин. Использование методов генной инженерии для получения изолированного гликопротина вируса бешенства, исключающих работу с патогеном, повышают безопасность получаемых вакцин.

Известен способ получения вакцины против бешенства, содержащей изолированный поверхностный гликопротеин вируса бешенства, экспрессированный в эукариотических клетках (US. Pat. 9411112). Кодирующую последовательность ДНК гликопротеина вируса бешенства получают реакцией обратной транскрипции на матрице РНК вируса или искусственно синтезируют, после чего она может быть встроена в коммерческий экспрессирующий вектор. Для экспрессии гликопротеина вируса бешенства в клетках S. cerevisiae разработан коммерческий плазмидный вектор pYES2 (hivitrogen, San Diego, CA). Получение гликопротеина вируса бешенства в клетках насекомых обеспечивается бакуловирусной системой экспрессии (Virology. 1989; 173(2):390-9), например, коммерческим набором МахВас (bivitrogen, Sail Diego, CA). Для получения гликопротеина вируса бешенства в клетках млекопитающих (клетки яичника китайского хомячка) может быть использован плазмидный вектор pcDNA I bivitrogen, San Diego, CA). Высокий уровень экспрессии интересующего гена обеспечивается присутствием промоторных последовательностей, энхансеров, сигнала полиаденилирования. Таким образом, получение поверхностного гликопротеина вируса бешенства возможно как в прокариотичексих, так и в эукариотических системах экспрессии, однако, использование клеток эукариот является предпочтительным, поскольку они обеспечивают необходимые посттрансляционные модификации, что приводит к образованию функционально активного продукта.

Рекомбинантный гликопротеин вируса бешенства вводится перорально животным в виде приманки с привлекательным вкусом и запахом в количестве от 100 до 300 мкг. При пероральной иммунизации описанным способом гликопротеин вируса бешенства, попадая в организм животных связывается с эпителием ротовой полости и глотки, что приводит к развитию мукозального иммунитета.

Описанный способ как наиболее близкий к заявляемому выбран за прототип.

Однако к недостаткам прототипа относится быстрая деградация в организме за счет действия протеолитических ферментов и клеток иммунной системы, короткий период полураспада чужеродного белка в организме (в среднем 2-3 часа), необходимость введения в организм больших доз вакцинных препаратов для достижения положительного эффекта; для эффективной пероральной иммунизации изолированным вирусным белком необходимо применение адъюванта; высокая себестоимость процесса получения препаративных количеств рекомбинантного гликопротеина вируса бешенства, связанная с необходимостью культивирования эукариотических клеток для получения препаративных количеств рекомбинантного белка.

Целью предполагаемого изобретения является получение рекомбинантной многокомпонентной вакцины, накопленной в аллантоисной жидкости куриных эмбрионов, для однократной пероральной иммунизации животных против вируса бешенства.

Сущностью предлагаемого изобретения является использование смеси рекомбинантного гликопротеина вируса бешенства и аденовирусов птиц CELO, экспрессирующих мембраннсвязанную и секретируемую формы гликопротеина вируса бешенства, накопленных в аллантоисной жидкости куриных эмбрионов. Рекомбинантный аденовирус птиц CELO, экспрессирующий секретируемую форму гликопротеина вируса бешенства обеспечивает присутствие данного компонента непосредственно в вакцинном препарате, а рекомбинантный аденовирус птиц CELO, экспрессирующий мембраннсвязанный гликопротеин вируса бешенства позволяет осуществлять эффективную и пролонгированную экспрессию целевого гена в организме иммунизированных животных, что приводит к формированию у них мощного гуморального и цитотоксического иммунного ответа против бешенства.

В качестве носителя для действующего вещества вакцины и адъюванта используется рекомбинантный аденовирус птиц CELO. Вектор CELO обеспечивает высокий уровень экспрессии целевого гена в клетках куриного эмбриона (Protein Expr Purif. 2009; 65(1): 100-7), что приводит к накоплению рекомбинантного гликопротеина вируса бешенства в аллантоисной жидкости в концентрациях, достаточных для проведения иммунизации (до 100 мкг/мл). Вектор CELO способен осуществлять доставку репортерных генов и генов интереса в млекопитающих in vivo и обеспечивает пролонгированную экспрессию (до 30 дней), что обеспечивает продление периода циркуляции антигена в организме (Mol Gen Mikrobiol Virusol. 2008; (4):26-30). Эта система вирусной доставки генов безопасна для млекопитающих, так как вирус CELO не способен к репликации в клетках данных хозяев. Основным преимуществом аденовирусного вектора CELO является возможность получения препаративного количества рекомбинантных вирусов CELO в куриных эмбрионах. Количество рекомбинантных аденовирусов CELO, получаемое из одного куриного эмбриона, составляет более 10 12 вирусных частиц. Титр вируса в аллантоисной жидкости составляет 5×10 8 БОЕ/мл. Рекомбинантный гликопротеин вируса бешенства и аденовирусные частицы, присутствующие в аллантоисной жидкости, достаточно стабильны в течение времени, необходимого для проведения иммунизации, поэтому дополнительной стабилизации препарата не требуется.

Для решения проблемы, связанной с ограниченной эффективностью трансдукции клеток млекопитающих векторами на основе аденовируса птиц, разработаны подходы, заключающиеся в генетической модификации отростка пентона (фибера). Данные подходы включают конструирование «химерных» фиберов (замена глобулярного домена на соответствующий домен альтернативного серотипа аденовирусов) или введения различных гетерологичных рецептор-связывающих последовательностей на С-конец или в HI-петлю 3 глобулярного домена фибера (J Virol., 2007 81(18); 9641-9652.). Такие модифицированные векторы способны обеспечивать эффективную доставку генетической информации в клетки млекопитающих, в норме резистентных к инфекции аденовирусами.

За счет способности взаимодействовать с рецепторами врожденного иммунитета аденовирусный вектор может выступать в качестве адъюванта (J. Virol., 2002, р.127-135).

Вирус бешенства вакцинного штамма ТС-80 размножают в культуре клеток почки сайги. Титр полученного вируса определяют в соответствии с рекомендациями ВОЗ (Laboratory Technics in rabies. 4 th edition. WHO, Geneva, 1996). Титр вируса составляет 10 8 БОЕ/мл.

Стандартный штамм вируса бешенства CVS-24 для проведения заражения летальной дозой вируса получают из ткани мозга инфицированных новорожденных мышей (J Ехр Med. 1977 1; 145(6):1617-22).

Ген гликопротеина G получают путем амплификации кДНК, синтезированной методом ОТ-ПЦР (Reverse Tpanscription System «Invitrogene» № 12236-014, USA) на матрице РНК, выделенной из вируса бешенства вакцинного штамма ТС-80 с использованием TRIZOL («Invitrogene» № 15596-018, USA). Для ПЦР используют олигонуклеотиды, фланкирующие полный ген гликопротеина 5′-ggatccaggaaagatggttcctcaggctctcctgtttg и 5′-gctgcagcaaggggaggtgatcttcagacttggatcgt, подобранные согласно последовательности гена гликопротеина вируса бешенства (gene bank AB518487.1). Фрагмент ДНК, несущий ген гликопротеина G вируса бешенства (последовательность № 1), клонируют в плазмидный вектор pGEM-T Easy Vector («Promega», A1360, USA). Ген гликопротеина G вируса бешенства субклонируют в составе экспрессирующей кассеты, состоящей из промотора CMV с энхансером и участком полиаденилирования BGH в вектор pCBEdlRV, содержащий фрагмент генома аденовируса CELO с делецией, несущественной для репликации вируса области. Рекомбинантный аденовирус CELO-glRb, несущий ген гликопротеина вируса бешенства, получают методом гомологичной рекомбинации в клетках LMH. Растворимую форму гликопротеина G вируса бешенства ( glRb) получают путем сайт-специфического мутагенеза с использованием олигонуклеотидов: 5′-aggagcatgcaaactcaag, 5′-ggtggcggccgctcaatgcac, внося замену в аминокислотной последовательности в положении 417: Pro417 на стоп-кодон. Вариант гена гликопротеина G вируса бешенства с делецией трансмембранного домена (последовательность № 2) субклонируют в составе экспрессирующей кассеты, состоящей из промотора CMV с энхансером и участком полиаденилирования BGH в вектор pCBEdlRV, содержащий фрагмент генома аденовируса CELO с делецией, несущественной для репликации вируса области. Рекомбинантный аденовирус CELO- glRb, несущий ген гликопротеина вируса бешенства с делецией, получают методом гомологичной рекомбинации в клетках LMH. Схематическое изображение геномной ДНК рекомбинантного аденовируса птиц CELO-glRb, несущего ген гликопротеина G вируса бешенства, представлено на фигуре 1А

Плазмидную конструкцию, несущую полноразмерный геном аденовируса птиц CELO-HIRGD, имеющего модификации структурных белков капсида (фибера) и экспрессирующую кассету с геном гликопротеина вируса бешенства, получают методом гомологичной рекомбинацией в Е. coli штамма BJ5183 между плазмидами pCELO-HIRGD, и шаттл-вектором pCShCMV-glRb, несущим экспрессирующую кассету (CMV промотор, трансген, сигнал полиаденилирования), фланкируемую последовательностями CELO. Шаттл-вектор pCShCMV-glRb линеаризуют по рестриктазе AscI. Плазмиду pCELO-HIRGD линеаризуют по PacI. Шаттл-вектор вместе с плазмидой pCELO-HIRGD трансформируют в клетки Е. coli штамма BJ5183. Получение рекомбинантных клонов подтверждают с помощью ПЦР, рестрикционным картированием и секвенированием. Схематическое изображение геномной ДНК рекомбинантного аденовируса птиц CELO-HIRGD-glRb, имеющего модификации структурных белков капсида, несущего ген гликопротеина G вируса бешенства, представлено на фигуре 1Б.

Экспрессию гена гликопротеина G вируса бешенства в куриных эмбрионах, зараженных аденовирусами CELO- glRb, CELO-glRb, CELO-HIRGD-glRb, определяют методом иммуноблоттинга. Куриные эмбрионы заражают рекомбинантными аденовирусами CELO- glRb, CELO-glRb, CELO-HIRGD-glRb. В качестве контрольного используют аденовирус CELO дикого типа. Через 72 часа после заражения отбирают аллантоисную жидкость, которую анализируют методом иммуноблоттинга. В реакции используют моноклональные антитела к вирусу бешенства штамма ТС-80. Специфическое взаимодействие комплекса антиген-антитело выявляют антивидовым иммунопероксидазным конъюгатом (Goat-antimouse IgG-HRP, Amersham, 1:5000). Окраску проводят с использованием хемилюминисцентной системы детекции (ECL-plus Detection System, Amersham). Результат проведенного иммуноблоттинга представлен на фигуре 2.

Результат анализа показывает специфическое взаимодействие антител и рекомбинантного белка, соответствующего по электрофоретической подвижности гликопротеину G вируса.

Полученным культуральным вирусным препаратом CELO-glRb инфицируют куриные SPF-эмбрионы, из расчета 100 мкл культурального препарата на эмбрион. Через 72 ч после заражения отбирают аллантоиснюю жидкость. Аналогичным образом получают препарат рекомбинантного аденовируса птиц CELO-HIRGD-glRb и препарат рекомбинантного аденовируса птиц, несущего в составе экспрессирующей кассеты ген гликопротеина G вируса бешенства без трансмембранного домена — CELO- glRb. Для проведения иммунизации аллантоисные препараты рекомбинантных вирусов CELO-glRb и CELO-HIRGD-glRb смешивают в соотношении 1:1 с препаратом рекомбинантного аденовируса птиц CELO- glRb. Полученные комбинации используются для пероральной иммунизации мышей в количестве 1 мл на животное.

Первой группе беспородных мышей перорально однократно вводят смесь рекомбинантных аденовирусов CELO-glRb/CELO- glRb в виде аллантоисного препарата. Второй группе вводят смесь рекомбинантных аденовирусов CELO-HIRGD-glRb/CELO- glRb. Третью группу мышей двукратно иммунизируют культуральной инактивированной вакциной, содержащей штамм вируса бешенства ТС-80. В качестве отрицательного контроля группе мышей однократно вводят аденовирус CELO дикого типа. Через 14 дней после иммунизации мышам интрацеребрально вводят 100 МЛД 50 вируса CVS-24. В группе мышей, однократно иммунизированных рекомбинантными аденовирусами CELO-glRb и CELO-HIRGD-glRb, выжило 91% и 90% животных, соответственно. При использовании стандартной культуральной инактивированной вакцины только 82% мышей были защищены от последующего заражения летальной дозой вируса бешенства штамма CVS-24 (таблица).

Классы МПК: A61K39/205 Rhabdoviridae, например вирус бешенства
C07K14/145 Phabdoviridae, например вирус бешенства, вирус Duvenhage, вирус Mokda, вирус везикулярного стоматита
C12N7/01 вирусы, например бактериофаги, модифицированные введением чужеродного генетического материала
C12N15/34 белки из ДНК вирусов
Автор(ы): Шмаров Максим Михайлович (RU) , Грибова Ирина Юрьевна (RU) , Тутыхина Ирина Леонидовна (RU) , Верховская Людмила Викторовна (RU) , Зубкова Ольга Вадимовна (RU) , Логунов Денис Юрьевич (RU) , Истомин Михаил Сергеевич (RU) , Хрипунов Егор Максимович (RU) , Новиков Борис Валентинович (RU) , Народицкий Борис Савельевич (RU) , Гинцбург Александр Леонидович (RU)
Патентообладатель(и): Федеральное государственное бюджетное учреждение «Научно-исследовательский институт эпидемиологии и микробиологии имени почетного академика Н.Ф.Гамалеи» Министерства здравоохранения и социального развития Российской Федерации (RU)
Приоритеты:
Определение уровня защиты против вируса бешенства мышей, иммунизированных рекомбинантными аденовирусами птиц CELO-glRb и CELO-HIRGD-glRb, имеющего модификации структурных белков капсида
Группа животных Количество животных, зараженных летальной дозой вируса бешенства Количество животных, погибших от вируса бешенства Количество выживших животных Выживаемость, %
Иммунизация вакцинным штаммом вируса бешенства ТС-80 11 2 9 82
Иммунизация смесью аденовирусов CELO-glRb/CELO- glRb 11 1 10 91
Иммунизация смесью аденовирусов CELO-HIRGD-glRb/CELO- glRb 10 1 9 90
Иммунизация аденовирусом CELO wt (отрицательный контроль) 11 11

Таким образом, показано, что максимальный уровень защиты мышей от внутрицеребрального заражения вирусом бешенства штамма CVS-24 — 91% — детектируется при однократной иммунизации рекомбинантными аденовирусами птиц CELO-glRb и CELO-HIRGD-glRb перорально.

Специфические антитела к вирусу бешенства в сыворотке крови мышей, иммунизированных рекомбинантной вакциной CELO-glRb или CELO-HIRGD-glRb, определяют методом непрямого иммуноферментного анализа.

Сенсибилизацию панелей проводят нормальным и специфическим антигенами, которые вносят разведенными в рабочем разведении в 0,01 М фосфатно-солевом буфере (ФСБ), pH 7,2-7,4 в нечетные и четные ряды, соответственно. Панели инкубируют в течение ночи при 4°С.

Свободные адсорбционные сайты полистирола блокируют 1% БСА, в объеме 0,15 мл /лунку, инкубируя в течение 30 минут при 37°С. После последующей отмывки пластин ФСБ с Твин-20 (ФСБ-Т) испытуемые сыворотки вносят в лунки панелей в разведении с 1:3 до 1:729 на 1% БСА в ФСБ. Пластины инкубируют в течение 40 минут при 37°С, затем проводят трехкратную отмывку в ФСБ-Т, вносят рабочее разведение (1:1000) антимышиного пероксидазного конъюгата и инкубируют в течение 40 минут при 37°С.

После этого пластины шестикратно отмывают ФСБ-Т и вносят раствор хромогенного субстрата (АБТС). Учет результата проводят через 30 минут инкубирования при комнатной температуре.

Учет реакции осуществляют фотометрически при длине волны 405 нм. Реакцию считают положительной и специфичной, если оптическая плотность хромогенного субстратного раствора в лунках, в которых предварительно инкубировали исследуемые сыворотки, а также в лунках, в которые вносили положительные контрольные сыворотки, в 2 или более раз превышала среднюю оптическую плотность субстрата в лунках, в которые вносили контрольные (отрицательные) нормальные сыворотки.

Результат титрования специфических антител к вирусу бешенства в сыворотке крови мышей, иммунизированных рекомбинантным вирусом CELO-glRb, представлен на фигуре 5. Титр антител в сыворотке крови мышей, иммунизированных рекомбинантными аденовирусами CELO-glRb и CELO-HIRGD-glRb, коррелирует с титром антител, детектированным в сыворотках крови мышей после иммунизации культуральной вакциной ТС-80. Рекомбинантные вирусы CELO-glRb и CELO-HIRGD-glRb при введении мышам индуцируют синтез высокого уровня специфических антител против гликопротеина G вируса бешенства.

Таким образом, получена вакцина, содержащая смесь гликопротеина вируса бешенства, а также рекомбинантных аденовирусов птиц, один из которых (CELO-glRb) экспрессирует секретируемую форму поверхностного гликопротеина вируса бешенства, а второй (CELO-glRb или CELO-HIRGD-glRb) — мембраннсвязанную, однократное пероральное введение которой приводит к эффективной защите от летальных доз вируса бешенства.

Способ получения пероральной вакцины против вируса бешенства животных, включающий получение рекомбинантного гликопротеина вируса бешенства для пероральной иммунизации, отличающийся тем, что получают аллантоисную жидкость куриных эмбрионов, содержащую рекомбинантный гликопротеин вируса бешенства, его продуцент — рекомбинантный аденовирус птиц CELO, а также рекомбинантный аденовирус птиц CELO, являющийся продуцентом мембранно-связанного гликопротеина вируса бешенства, или рекомбинантный аденовирус птиц CELO, имеющий модификации структурных белков капсида и являющийся продуцентом мембранно-связанного гликопротеина вируса бешенства.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *