Меню Рубрики

Как можно преодолеть бесплодие отдаленных гибридов

% СРЕДСТВО ЧТОБЫ ЗАБЕРЕМЕНЕТЬПОДРОБНЕЕ КЛИКАЙТЕ ЗДЕСЬ https://goo.gl/qB8LXU

Как Преодолеть Бесплодие Отдаленных Гибридов
https://vk.com/topic-303315_35789682
https://vk.com/topic-503203_36195804
https://vk.com/topic-302104_35718457
прием, впервые примененный в 1924 г . генетиком Г. Д. Карпеченко при
отдаленной гибридизации . Полученный им капустно-редечный гибрид был .

Доказал возможность преодоления бесплодия отдаленных гибридов путем
амфидиплоидии, получил плодовитый межродовой .
Велико значение отдаленной гибридизации в создании сортов,
обладающих . Для преодоления бесплодия отдаленных гибридов первого
поколения .
Бесплодие отдаленных гибридов , его причины и способы преодоления .
Страница 1. Так как одним из методов селекции является гибридизация, .
13 янв 2017 . БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ , ЕГО ПРИЧИНЫ И СПОСОБЫ
ПРЕОДОЛЕНИЯ . Отдаленные гибриды первого поколения, как .
8 дек 2016 . Карпеченко при отдаленной гибридизации .. Полученный им капустно-
редечный гибрид был .. Способ преодоления бесплодия .
Для преодоления бесплодия отдаленных гибридов в основном используют
следующие методы: 1,получение беккроссов, т.е. опыление растений F, .
Одним из выдающихся достижений современной генетики и селекции
явилась разработка способов преодоления бесплодия межвидовых гибридов
, .
Для преодоления бесплодия капустно-редечного гибрида Г. Д. бесплодие
потомков, полученных путём отдалённой гибридизации растений?
Гео́ргий Дми́триевич Карпе́ченко ( 21 апреля [3 05] 1899, Вельск,
Вологодская губерния . Как генетик известен своими работами в области
отдалённой гибридизации . скоту), Карпеченко показал принципиальную
возможность преодоления стерильности, возникающей при отдаленной
гибридизации .
Доказал возможность преодоления бесплодия отдаленных гибридов путем
амфидиплоидии, получил плодовитый межродовой редечно-капустный .
28 май 2017 — 31 сек. — Диана Федотова преодоление бесплодия отдаленных гибридов : youtube/ watch?v=iL-5cEPg8DE Хотите стать мамой? есть .
27 май 2017 — 31 сек. — Милослава Ширяева как преодолеть бесплодие отдаленных гибридов . Милослава Ширяева. Loading. Unsubscribe from Милослава Ширяева? Cancel
28 май 2017 — 31 сек. — Валентина Максимова преодолеть бесплодие отдаленных гибридов можно: youtube /watch?v=uXIy_kf-Uj4 Бесплодие не приговор! не .
1 июн . Первые опыты по отдаленной гибридизации растений были начаты в . Для
преодоления бесплодия отдаленных гибридов первого .
Извлечение гибридных семян и хранение их до посева .. Преодолеть
бесплодие отдаленных гибридов , иногда можно с помощью менторов .
23 май . 9 ноя Бесплодие простых межвидовых гибридов связано с тем, что
каждая Впервые успешно преодолеть бесплодие отдаленных .
11 дек . Отдаленная гибридизация не находит широкого применения в селекции по
причине бесплодности получаемых гибридов . Одним из .
Реже ЦМС возникает как результат отдаленной гибридизации . [c.21] .
достижение селекции — преодоление бесплодия у ржано-пырейных
гибридов.
19 07 . ——-Что позволяет преодолеть бесплодие потомков, полученных путём
отдалённой гибридизации растений? получение полиплоидов.
Гибриды, полученные путем отдаленной гибридизации , бесплодны, так как у
них . Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко .
Успех работы при гибридизации зависит от подбора родительских пар для .
Для преодоления бесплодия отдаленных гибридов И. В. Мичурин .
11 апр 2017 . Для преодоления нескрещиваемости растений пестики обрабатывают .
БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ , ЕГО ПРИЧИНЫ И.
БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ , ЕГО ПРИЧИНЫ И СПОСОБЫ
ПРЕ

источник

Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридов между ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.

На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентнымион назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).

К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1 a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

Рассмотрим основные причины стерильности отдаленных гибридов, связанные с нарушением микро- и макроспорогенеза.

Разное число хромосом у скрещиваемых видов, приводящее к образованию унивалентов.При скрещивании разнохромосомных видов у гибридов F1 нарушается парность хромосом, в результате чего образуются нежизнеспособные гаметы. Рассмотрим этот случай на примере скрещивания пшеницы мягкой (2п = 42) с твердой (2п = 28). В соматических клетках у таких гибридов будет 35 хромосом (21 + 14). При гаметогенезе 14хромосом одного вида конъюгируют с 14 хромосомами другого, образуя 14 бивалентов; 7 хромосом мягкой пшеницы, не находя себе партнеров, остаются одиночными, их называют унивалентными, или унивалентами. В анафазе I мейоза бивалентные хромосомы расходятся в дочерние клетки поровну, в каждую по 14. Унивалентные же 7 хромосом, оказавшись «лишними», будут случайно распределяться между сортами в разных количествах. Таким образом, гаметы могут иметь разное число хромосом: 14, 15, 16, 17, 18, 19, 20 и 21. Большинство из них с излишком или недостатком хромосом по сравнению с числом, свойственным данному виду, оказываются нежизнеспособными. Это и определяет высокую стерильность, свойственную гибридам F1 между пшеницей мягкой и твердой.

При слиянии жизнеспособных гамет с разными числами хромосом образуются гибриды F2, в клетках которых содержится от 28 до 42 хромосом. Чем меньшее у этих гибридов число хромосом отклоняется от данных цифр, т. е. чем меньше выражена у них анеуплоидность, тем они более плодовиты. Наиболее жизнеспособными будут гибриды с числом хромосом 28 и 42, а затем анеуплоиды с 27—29 и 41—43 хромосомами. В последующих поколениях при самоопылении гибридов число анеуплоидных растений будет быстро уменьшаться, а число растений с хромосомными наборами исходных видов возрастать. По внешнему виду 42-хромосомные гибриды окажутся похожими на пшеницу мягкую, а 28-хромосомные — на твердую. Но это сходство не будет полным. В результате рекомбинации целых хромосом и обмена их участками во время конъюгации 42-хромосомные гибриды будут иметь отдельные признаки пшеницы твердой, а 28-хромосомные — мягкой.

Дата добавления: 2017-01-13 ; просмотров: 4245 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Спорогенез и гаметогенез у растений

Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Оно приводит к увеличению численности особей вида и способствует его расселению. У растений, подавляющее большинство которых ведет прикрепленный образ жизни, расселение в процессе размножения — единственный способ занять большую территорию обитания.

Различают два типа размножения: бесполое и половое. В, бесполом размножении участвует только одна родительская особь, которая делится, почкуется и образует споры. Размножение при помощи вегетативных органов у растений называется вегетативным. В случае полового размножения особи нового поколения появляются при участии двух организмов — материнского и отцовского.

Вегетативное размножение основано на способности организмов восстанавливать (регенерировать) недостающие части. Этот способ размножения широко распространен в природе, но с наибольшим разнообразием оно осуществляется у растений, особенно у цветковых.

Бесполое размножение характеризуется тем, что для воспроизводства потомства образуются специализированные клетки — споры, каждая из которых прорастает и дает начало новому организму. Спорообразование встречается у простейших (малярийный плазмодий), грибов, водорослей, мхов, плаунов, хвощей и папоротников. У голо — и покрытосеменных растений споры непосредственно в процессе, размножения не участвуют.

Споры образуются путем митоза или мейоза в обычных вегетативных клетках материнского организма или специальных органах — спорангиях и представляют собой микроскопические одноклеточные образования.

При любой форме бесполого размножения — частями тела или спорками — наблюдается увеличение численности особей данного вида без повышения их генетического разнообразия: все особи являются точной копией материнского организма. Эта особенность используется человеком для получения однородного, с хорошими признаками, потомства у плодово-ягодных, декоративных и других групп растений. Новые признаки у таких организмов появляются только в результате мутаций.

Половое размножение существенно отличается от бесполого тем, что в данном случае генотип потомков возникает в результате перекомбинации генов, принадлежащих обоим родителям. Это повышает возможности организмов в приспособлении к меняющимся условиям среды.

Половое размножение характеризуется наличием полового процесса, одним из важнейших этапов которого является слияние половых клеток, или гамет, специализированных гаплоидных клеток, одетых плазматической мембраной. Гаметы различаются по строению и физиологическим свойствам и делятся на мужские (подвижные — сперматозоиды, неподвижные — спермин) и женские (яйцеклетки). В отличие от спор одна гамета, за исключением случаев партеногенеза, не может дать начало новой особи. Этому предшествует процесс слияния двух половых клеток — оплодотворение, в результате которого образуется зигота. В дальнейшем из зиготы развивается зародыш нового организма.

Образование половых клеток (гаметогенез) у водорослей, многих грибов и высших споровых растений происходит путем митоза или мейоза в специальных органах полового размножения: яйцеклеток — в оогониях или архегониях, сперматозоидов и спермиев — в антеридиях. В процессе формирования половых клеток выделяют три стадии — размножения, роста и созревания[1].

Первичные половые клетки делятся путем митоза (период размножения), в результате чего их количество постоянно возрастает. В период роста деление клеток прекращается, и они начинают усиленно расти. При этом будущие яйцеклетки (ооциты) увеличиваются в размерах иногда в сотни и даже в тысячи раз за счет накопления в их цитоплазме запасных питательных веществ в виде желтка. Размеры незрелых мужских гамет (сперматоцитов) увеличиваются незначительно. Затем происходит их мейотическое деление, что приводит к образованию четырех гаплоидных клеток. При сперматогенезе все четыре клетки в дальнейшем превращаются в сперматозоиды.

Половое размножение растений включает несколько физиологических процессов: цветение, опыление, оплодотворение и образование плода и семени.

При оплодотворении пыльца, попадая на рыльце пестика, прорастает, образуя пыльцевую трубку, достигающую семяпочки в завязи цветка. У растений может быть одна семяпочка или несколько. В нижней части пыльцевой трубки образуются спермин. Затем происходит так называемое двойное оплодотворение, при котором один из спермиев сливается с яйцеклеткой, а другой — с центральной клеткой семяпочки. После оплодотворения из яйцеклетки в результате многократного деления развивается зародыш семени, а из оплодотворенной центральной клетки образуется запас питательных веществ семени. Так в результате двойного оплодотворения образуется семя, состоящее из оболочки, зародыша и запаса питательных веществ, из которого впоследствии развивается новое растение. Полученное при половом размножении потомство наследует признаки обоих родителей[2].

Норма реакции генотипа

При формировании генетических представлений о связи между геном и признаком изначально предполагалось, что каждому признаку соответствовал особый детерминант (наследственный фактор), который обусловливал развитие своего признака. Однако такие представления далеки от истины, а прямые и однозначные связи гена с признаком на самом деле скорее исключение, чем правило. Было установлено, что на один признак могут влиять многие гены и, наоборот, один ген часто влияет на многие признаки. Кроме того, действие гена может быть изменено соседством других генов или условиями внешней среды.

В онтогенезе действуют скорее не отдельные гены, а весь генотип как целостная интегрированная система со сложными связями и взаимодействиями ее компонентов. Более того, эта система не является застывшей, она динамична, меняется, совершенствуется во времени, в результате генных мутаций постоянно появляются новые гены. Могут формироваться также качественно новые хромосомы за счет хромосомных мутаций и даже новые геномы за счет геномных мутаций. Вновь возникшие гены могут сразу же вступать во взаимодействие с уже имевшимися генами или менять, модифицировать характер работы последних, даже будучи рецессивными, т.е. не проявляясь сами по себе[3].

Таким образом, в каждый конкретный промежуток времени у каждого вида растений и животных генотип проявляет себя как исторически сложившаяся к данному моменту целостная система.

Характер проявления действия гена может изменяться в различных ситуациях и под влиянием различных факторов. Законы Менделя отражают законы наследования, то есть передачи генов в ряду поколений, только при обязательном соблюдении двух условий: гены должны быть локализованы в разных парах гомологичных хромосом (это дает им возможность независимо комбинироваться и наследоваться) и за каждый признак должен отвечать только один ген. Однако это далеко не всегда так. Для того, чтобы убедиться в том, что характер проявления генов разнообразен, рассмотрим свойства генов и особенности их проявления в признаках:

ген дискретен в своем действии, то есть, прерывист, обособлен в своей активности от других генов;

ген специфичен в своем проявлении, т.е. отвечает за строго определенный признак (на молекулярном уровне каждый ген отвечает за синтез одного конкретного белка);

ген может действовать градуально, то есть может усиливать степень проявления признака (например, увеличивать количество синтезируемого вещества) при увеличении числа доминантных аллелей (дозы гена);

один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена;

разные гены могут оказывать одинаковое действие на развитие одного и того же признака — это множественные гены, или полигены; при этом чаще всего наблюдается усиление или ослабление признаков — в таком случае это кумулятивное (накопительное) действие гена, которое обусловливает проявление так называемых количественных признаков;

ген может вступать во взаимодействие с другими генами, что приводит к появлению новых признаков. Поскольку гены дискретны и специфичны, они взаимодействуют не непосредственно, а продуктами своих реакций — веществами, синтезированными под их контролем;

действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или условиями внешней среды и другими факторами[4].

Читайте также:  Что сделать чтобы забеременеть при бесплодии

Множественное действие генов — это способность гена воздействовать на несколько признаков одновременно.

В процессе индивидуального развития организма фенотип может меняться, а генотип остается таким же, каким был получен от родителей при слиянии их гамет (процесс мутирования в данном случае во внимание не принимается). Как правило, роль генотипа в определении фенотипа является решающей. Это относится в первую очередь к проявлению ряда качественных признаков (красная окраска цветков, желтая и зеленая окраска семян гороха, голубой цвет глаз у человека, наличие ушной раковины и т.д.), а также к большинству простых биохимических признаков (синтез определенных специфических белков при наличии всех необходимых компонентов).

Однако роль условий внешней среды в реализации многих или даже большинства признаков игнорировать нельзя. Они могут модифицировать, то есть изменять, характер проявления признака, но только в определенных, наследственно обусловленных пределах, называемых нормой реакции. Такая изменчивость признака в одну и в другую сторону под влиянием условий внешней среды называется модификационной. Она не наследуется, а проявляется только в индивидуальном развитии данного организма. Влиянию условий внешней среды в большей степени подвержены количественные признаки. Поэтому по фенотипу часто невозможно определить, является ли он следствием только генотипа или генотипа и условий среды. Для того чтобы представить всю сложность взаимодействия генотипа с условиями среды, а также определить долю вклада генотипа и условий среды в фенотипическое проявление признака, обычно применяются специальные методы математического анализа.

Бесплодие отдаленных гибридов, его причины и способы преодоления

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг — разведение в себе) и скрещивание между неродственными формами (аутбридинг — неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания — к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, то есть принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис — явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазм этической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, то есть дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация — это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г.Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов по следующей схеме[5]:

G: Мейоз нарушен, гибрид стерилен, нормальных гамет нет.

Обработка колхицином, приводящая к удвоению числа хромосом.

источник

Бесплодие Отдаленных Гибридов

13 01 2019 — На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил .
прием, впервые примененный в 1924 г . генетиком Г. Д. Карпеченко при отдаленной гибридизации . Полученный им капустно-редечный гибрид был .
20 04 — есплодие простых межвидовых гибридов связано с тем, что каждая хромосома представлена одним гомологом, и образование .
Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний. Системы .
Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью .
Для преодоления бесплодия отдаленных гибридов в основном используют следующие методы: • получение беккроссов, т.е. опыление растений F, .
Для преодоления бесплодия отдаленных гибридов в основном используют следующие методы: 1,получение беккроссов, т.е. опыление растений F, .
Реже ЦМС возникает как результат отдаленной гибридизации . [c.21] . достижение селекции — преодоление бесплодия у ржано-пырейных гибридов.
18 04 — ОТДАЛЕННАЯ ГИБРИДИЗАЦИЯ, скрещивание организмов, .. Бесплодия отдаленных гибридов , его причины и способы преодоления.
СЕЛЕКЦИЯ РАСТЕНИЙ, ЖИВОТНЫХ И МИКРООРГАНИЗМОВ. Отдаленная гибридизация позволяет сочетать в одном организме ценные признаки .
22 03 2019 — Бесплодие отдаленных гибридов чаще всего обусловлено: 1.отсутствие репликации ДНК 2.нарушением расхождения хро…. Посмотри .
17 08 2019 — Разработанный ученым генетиком Г. Д. Карпечнко метод преодоления бесплодия у межвидовых гибридов имеет большое значение в .
17 08 — Здесь представлены примеры видов отдаленной гибридизации. Для преодоления бесплодия отдаленных гибридов первого .
Основным затруднением при отдаленной гибридизации является нескрещиваемость отдаленных видов между собой и бесплодие отдаленных .
1 06 — Первые опыты по отдаленной гибридизации растений были начаты в . Для преодоления бесплодия отдаленных гибридов первого .
Осн. труды по отдалённой гибридизации и получению амфидиплоидных и полиплоидных растений. Выяснил причины бесплодия отдалённых гибридов .
. межродовой редечно-капустный гибрид (Raphanobrassica), экспериментально доказал возможность преодоления бесплодия у отдалённых гибридов .
. Г. Д. Карпеченко по отдаленной гибридизации растений, в которых он показал роль полиплоидии в преодолении бесплодия отдаленных гибридов .
Гео́ргий Дми́триевич Карпе́ченко ( 21 апреля [3 05] 1899, Вельск, Вологодская губерния . Обычно межвидовые гибриды оказываются стерильными, поскольку из-за . стерильности, возникающей при отдаленной гибридизации . Гибридное видообразование; ↑ Преодоление бесплодия гибридов; ↑ Опыт .
Аллополиплоидия. Полиплоиды, полученные в результате отдаленной . Возможность преодоления бесплодия отдаленных гибридов была показана в .
Как преодолеть бесплодие отдаленных гибридов ? (С помощью полиплоидизации.) . Приведите примеры отдаленной гибридизации у животных. (Мулы,.
довольно часто наблюдае05 пониженная плодовитость, вплоть до полного бесплодия (стерильности), у отдаленных гибридов потомков, полученных .
Сочетание отдаленной гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдаленных гибридов .
Среди отдаленных скрещиваний различают две группы: 1) . Главной причиной, определяющей бесплодие отдаленных гибридов , является нарушение .
Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдаленной гибридизации . +.
Закон единообразия гибридов первого поколения. Бесплодие отдаленных гибридов , его причины и способы преодоления. Особенности формы .
4 03 2019 — в) получения чистых линий г) улучшения свойств у гибридов . Выберите ученого, который преодолел бесплодие отдаленных гибридов .
Очень часто из гибридных семян вырастает бесплодное потомство. Бесплодие отдаленных гибридов объясняется тем, что из-за большого .
Преодолеть бесплодие отдаленных гибридов можно.
Как преодолеть бесплодие отдаленных гибридов . 12.Какое явление получило название полиплоидии? 13.Какой межродовой гибрид был получен Г.Д.
Впервые преодолеть бесплодие межвидового гибрида удалось в 1924 Отдаленная гибридизация подразумевает скрещивание животных, которые .
15 08 — Значение отдаленных скрещиваний в селекции . первым указал путь преодоления бесплодия отдаленных гибридов и синтеза на их .
Теоретические основы отдаленной гибридизации . 10.Причины и методы преодалениянескрещиваемости видов и родов. 11. Бесплодие отдаленных .
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ОТДАЛЕННОЙ ГИБРИДИЗАЦИИ МАЛИНЫ . семян и полным или частичным бесплодием отдаленных гибридов .
Отдаленная гибридизация растений. Преодоление нескрещиваемости. Бесплодие отдаленных гибридов , его причины и способы преодоления.
Явление пониженной плодовитости у полиплоидов. 8. Аллоплоидия. Причины бесплодия отдаленных гибридов и пути его восстановления. Работы.
Методика преодоления бесплодия у отдаленных гибридов была разработана в 1924 году советским ученым Г.Д. Карпеченко. Он поступил следующим .
Межвидовые гибриды, как правило, бесплодны (негомологичные . Кроме того, был разработан метод преодоления бесплодия отдаленных гибридов .
Гибридная мощность, проявляющаяся в превосходстве гибрида над . Бесплодие отдалённых гибридов в селекции растений преодолевается путём:.
Бесплодие отдаленных гибридов , его причины и способы. Иная история в случае межвидового гибрида. XFZN96Dgr4 Диагноз БЕСПЛОДИЕ. Согласно .
3 08 — Такую возможность дает применение отдаленной гибридизации . для преодоления бесплодия гибридов первого поколения.
ее причины. Методы преодоления нескрещиваемости. Бесплодия отдаленных гибридов . Использование отдаленных гибридов в селекции./ лекция/.
1 04 — Причины пониженной плодовитости и бесплодия отдаленных гибридов . 39. Понятие об инбридинге и аутбридинге. Генетическая .
. устранять ошибки митоза 4) преодолевать бесплодие отдаленных гибридов Примером применения в селекции искусственного мутагенеза явля ется: .
. устранять ошибки митоза 4) преодолевать бесплодие отдаленных гибридов Примером применения в селекции искусственного мутагенеза явля ется: .
14 08 2019 — а) отдаленной гибридизации б) скрещивании разных чистых линий . Бесплодие межвидовых гибридов преодолевается с помощью:.
Впервые успешно преодолеть бесплодие отдаленных гибридов посредством полиплоидии удалось русскому генетику Г. Д. Карпеченко в 1924
Заказывайте контрольную работу «3. Бесплодие отдаленных гибридов , его причины и способы преодоления 884» в компании Студент-Сервис по .
Причина бесплодия гибридов F1, получаемых методом отдаленной . Значение метода отдаленной гибридизации в селекции заключается в том, что в .
Грозит Бесплодие
Бесплодие 20
Способы Лечения Бесплодия У Женщин
Почему Не Получается Забеременеть С Первого Раза
Как Быстро Можно Забеременеть После Выкидыша
Замершая Беременность После Эко Форум
Сохранение Беременности После Эко
Какие Симптомы Бесплодия
Клиники Лечащие Бесплодие
Ставят Бесплодие Женщине
Прогинова Инструкция По Применению При Бесплодии
Как Быстро Забеременеть В 39 Лет
Лечение Первичного Бесплодия
Как Можно Забеременеть Если Не Получается Видео
Стать Причиной Бесплодия
Как Забеременеть Девочкой Быстро Народные Средства
Сбор Трав От Бесплодия
Остеопат Бесплодие
Как Вылечить Бесплодие У Женщин
Вопросы Бесплодию
Клиника Центр Эко Москва Ул Аргуновская Отзывы
Тысячелистник Бесплодии
Факторы Бесплодия Мужчин
Бесплодие Диссертации
Бесплодие У Мужчин И Женщин
Сайт Клиники Арт Эко
Статистика Клиник Эко По Успешным Беременностям
Бесплодие У Женщин Лечение Народными Средствами
Как Быстро Можно Забеременеть Трубой
Гормональный Сбой Причина Бесплодия
Эко Клинике Некст
Врожденное Бесплодие У Женщин
Ооо Центр Лечения Бесплодия Эко Официальный Сайт
Красная Щетка Применение Бесплодии
Как Считается Срок Беременности При Эко
Как Определяется Бесплодие
Как Быстро Забеременеть После Лапароскопии Яичников
Позы Чтобы Забеременеть Быстро В Картинках
Искусственная Инсеминация Бесплодие
Клиники Эко Официальный Сайт
Лечение Бесплодия В Краснодаре Отзывы
Бесплодие После Эскапела
Делают Ли Эко Беременности
7 Недель Эко Беременности Не Увидели Сердцебиение
Клиника Эко Содействие В Москве
Как Быстро И Качественно Забеременеть
Определение Бесплодия Мужчин
Посоветуйте Клинику Эко В Москве
Бесплодие Воронеж Отзывы
Уреаплазма И Бесплодие
Фригидность Бесплодие
Прививка Вызывающая Бесплодие
Женское Бесплодие Видео
Диагностика Причин Бесплодия
Мужское Бесплодие К Какому Врачу Обращаться
Принимать Красную Щетку Бесплодии
Как Быстро Можно Забеременеть После Чистки
Клиники Эко Швейцария
Как Быстро Забеременеть Если Не Получается Советы
Отвар Матрены Матроны От Бесплодия
Аппликатор Ляпко Бесплодии Отзывы
Третий Дней Беременности После Эко
Контрацептивное Бесплодие
Как Забеременеть После 40 Лет Народные Средства
Эрозия Шейки Бесплодие
Какие Виды Бесплодия
Проблема Бесплодия На Сегодняшний День
Дельта Клиник На Курской Отзывы Эко
Сперма Бесплодии
Какие Признаки Бесплодия
Как Быстро Можно Забеременеть После Медикаментозного Аборта
Процент Мужского Бесплодия
Как Можно Определить Бесплодие У Женщин
Желтуха У Мужчин Бесплодие
Признаки Беременности При Эко Отзывы
Пить Бесплодия
Пятый Дней Беременности После Эко
Санаторное Лечение Бесплодия
Калькулятор Беременности После Эко Рассчитать
Черный Тмин Отзывы При Бесплодии
Спаечный Процесс Бесплодие
Болезни Бесплодия У Женщин
Как Быстро Можно Забеременеть После Медаборта Отзывы
Арт Эко Клиника Официальный Сайт Отзывы
Показания Хгч При Беременности После Эко
Кровит Беременности После Эко
Какие Анализы Надо Сдать Мужчине Бесплодие
Психология Бесплодия
Лучшие Позы Для Зачатия Девочки
Психологическое Бесплодие Форум
С Какого Раза Получилось Забеременеть
Порча На Бесплодие Как Определить
Лечение Бесплодия Гормональными Препаратами
Как Быстро Забеременеть После Месячных Народными Средствами
Лечение Бесплодия Где
Бесплодие Яловость
Лечение Бесплодия Санкт Петербург Отзывы
Простатит И Бесплодие
Как Забеременеть Если Не Получается Позы
Мохилхин От Бесплодия

источник

ОТДАЛЕННАЯ ГИБРИДИЗАЦИЯ, скрещивание организмов, принадлежащих к разным видам (межвидовая гибридизация), родам (межродовая гибридизация) или к др. таксономическая единицам более высокого порядка, т. е. организмов, находящихся в отдаленных филогенетическими (родственных) связях. Закономерности наследственности, наследования и наследственной изменчивости являются общими как при отдаленной, так и при внутривидовой гибридизации, поскольку в обоих случаях предполагается соединение в зиготе гамет 2 разных генотипов.

Главными проблемами, с которыми приходится сталкиваться селекционеру при отдаленной гибридизации, являются: 1) нескрещиваемость генетически далеких видов; 2) невсхожесть гибридных семян; 3) стерильность полученных гибридов.
Основная причина нескрещиваемости или затруднений при отдаленной гибридизации заключается в генетическом, физиологическом и структурном несоответствии гамет генетически отдаленных форм. В результате обычно трудно получить потомство от таких скрещиваний.
При скрещивании генетически отдаленных форм чаще всего наблюдается одно из следующих явлений:
1) пыльца не прорастает на рыльце другого вида;2) пыльца прорастает, но пыльцевые трубки растут слишком медленно, и оплодотворения не происходит;3) оплодотворения не происходит, хотя пыльцевые трубки достигают зародышевого мешка;
4) оплодотворение происходит, но зародыш прекращает свое развитие на стадии образования нескольких клеток;5) зародыш вначале хорошо развивается, но затем его рост прекращается, в результате чего образуются невсхожие семена.

Преодоление нескрещиваемости разных видов. Разработаны разнообразные методы преодоления нескрещиваемости растений, относящихся к разным видам и родам: применение реципрокных скрещиваний, использование в скрещиваниях разных биотипов, изменение уровня плоидности у родительских форм, получение посредника, проведение опыления в разные периоды развития рыльца, укорачивание столбика или внутризавязное опыление, удаление рыльца перед опылением и замена его кусочком питательной смеси, обработка пестиков стимуляторами роста, опыление смесью пыльцы, вегетативное сближение скрещиваемых форм, культивирование на питательной среде вычлененных семяпочек, предварительное воздействие на скрещиваемые растения физическими и химическими факторами. Так, в Международном центре по улучшению кукурузы и пшеницы путем обработки родительских растений в период формирования у них генеративных органов 0,1 %-ным раствором эпсилон-аминокапроновой кислоты (опрыскиванием или инъекцией) удалось преодолеть генетическую несовместимость пшеницы и ячменя, что раньше было неосуществимо. При несовпадении сроков цветения растений скрещиваемых видов применяют метод длительного хранения пыльцы и другие приемы.
В тех случаях, когда ни один из названных способов не позволяет добиться успеха вследствие больших генетических различий скрещиваемых видов, объединения их наследственности часто можно достигнуть методом слияния протопластов клеток.
Завязывание семян при межвидовых скрещиваниях еще не гарантирует получения гибридных растений. Во многих случаях гибридные семена бывают слабо развитыми и не прорастают. Для определения степени их жизнеспособности можно использовать рентгеноскопический метод анализа, позволяющий безошибочно отделять здоровые семена от недоразвитых и пустых.

Читайте также:  Бесплодные браки женское и мужское бесплодие

43. Работы И.В. Мичурина по преодолению нескрещиваемости растений. При выведении высокоустойчивых к филлоксере, мильдью и морозу качественных технических или подвойных сортов винограда можно применять отдаленную межродовую гибридизацию. Для скрещивания с европейско-азиатоким видом могут быть использованы представители таких абсолютно устойчивых против филлоксеры и мильдью родов, как Витис ротундифолиа, Витис ампелопсис, Витис партеноциссус (рис. 67, 68, 69), а возможно, и других еще не привлекавшихся к скрещиванию устойчивых форм винограда.
Возможность межродового скрещивания растений подтверждена многочисленными фактами. Известно, что путем отдаленного скрещивания получены гибриды между такими растениями, как ежевика и малина (И. В. Мичурин, Л. Бербанк), вишня и черемуха, рябина и боярышник (И. В. Мичурин), слива и абрикос (Л. Бербанк, П. Н. Яковлев, Д. Н. Веньяминов), яблоня и груша (С. Ф. Черненко), красная и черная смородина, смородина и крыжовник (А. Я. Кузьмин), картофель и помидор, помидор и перец (Рудольф Палочай) и т. п.
Особый интерес для селекционера-виноградаря представляет вид Витис ротундифолиа, как абсолютно устойчивый к филлоксере и обладающий сравнительно качественными плодами. Ранее предпринятые попытки полового скрещивания растений этого вида, а также родов Ампелопсис и Партеноциссус с культурным виноградом Витис винифера не увенчались успехом. И. С. Ромашко занимался вегетативным сближением видов Витис ротундифолиа и Витис винифера с целью последующего их скрещивания, но эти опыты, к сожалению, не доведены до конца.
За рубежом получены первые гибриды между указанными видами при использовании в качестве материнского растения Витис винифера, но они бесплодны и не имеют пока практического, значения.

Несмотря на эти пока неудачные опыты, все возможности для получения плодовитых межродовых гибридов винограда далеко еще не исчерпаны. С целью преодоления нескрещиваемости далеких по родству виноградных лоз должны быть испытаны различные методы, разработанные И. В. Мичуриным и другими селекционерами. Хотя эти методы предложены в основном для плодовых растений, нет сомнения в том, что применение их может быть эффективным и в преодолении нескрещиваемости разнородных виноградных лоз.
В настоящее время известно несколько методов преодоления нескрещиваемости растений. Сущность их сводится к получению пригодных для отдаленного скрещивания растительных организмов с расшатанной наследственностью или непосредственно к ослаблению избирательной способности цветков материнского и пыльцы отцовского растений. Во многих случаях успех в гибридизации далеких по родству форм достигается лишь при комбинированном применении нескольких из описанных ниже способов преодоления нескрешиваемости наиболее соответствующих для избранных компонентов.

Скрещивание молодых гибридных растений при первом их цветении Прием разработан и рекомендован И. В. Мичуриным. Эффективность его обусловлена биологической особенностью стадийно молодого гибридного растения, а именно пластичностью еще не вполне сформировавшейся наследственности, вследствие чего создается возможность проведения успешной гибридизации двух представителей непосредственно нескрещивающихся видов или родов.
Наиболее эффективно применение этого приема при скрещивании впервые цветущих растений, полученных от межвидового (в пределах скрещивающихся видов) или межсортового скрещивания. И. В. Мичурин отмечал, что межродовое скрещивание при втором и последующем цветении этого же растения обычно не удается, особенно в том случае, если при первом цветении произошло завязывание от опыления пыльцой растений того же вида. По этому поводу он писал: «. Благоприятный результат от межвидовых и межродовых (говорю о многолетних плодовых деревьях) скрещиваний мне удавалось получить лишь исключительно при первом цветении гибридных сеянцев, полученных от скрещивания географически (по месту родины) далеких между собой растений, взятых для ролей как мужского, так и, в особенности, женского производителя» *.Все цветки материнского растения, не подвергшиеся искусственному опылению, Мичурин рекомендовал удалять во избежание естественного оплодотворения их пыльцой собственного вида и ухудшения условий для межвидового скрещивания.Предварительное вегетативное сближениеЭтот метод также разработан И. В. Мичуриным и многократно испытан им при скрещиваниях рябины и груши, яблони и груши, айвы и груши, тыквы и дыни, а также других, далеких по родству растений. Для вегетативного сближения берут однолетние черенки гибридных сеянцев, например груши, и прививают их в крону дерева другого вида или рода, допустим, яблони. Из прижившихся черенков груши развиваются сеянцы-привои, которые постоянно потребляют пластические вещества, вырабатываемые подвоем-яблоней, и постепенно, в течение ряда лет, настолько изменяются, что при последующей гибридизации становятся способными воспринимать чужеродную для них пыльцу яблони.
Длительность воздействия подвоя на природу привитых растений, необходимая для такой глубокой физиологической перестройки их половой системы, зависит от многих причин, причем необходимый результат далеко не всегда достигается в первый год цветения привоя.

Метод посредникаНескрещиваемость представителей двух далеких видов или родов может быть преодолена с помощью третьего растения— посредника. В качестве посредника обычно избирают форму, скрещивающуюся с представителями обоих непосредственно нескрещивающихся родов. Посредником может быть как естественно произрастающее растение, так и форма, полученная путем искусственной гибридизации. Так, например, И. В. Мичурин при выведении зимостойкого персика в качестве посредника между культурным персиком и зимостойким миндалем — бобовником использовал дикорастущий персик Давида. Скрестив дикий миндаль с персиком Давида, он получил гибридную форму, названную им Посредник, которая применялась как промежуточное звено для скрещивания с культурным персиком. Акад. П. Н. Яковлев, продолжая эту работу, в качестве нового посредника успешно применил гибрид между посредником И. В. Мичурина и естественно произрастающим миндало-персиком.
А. Я. Кузьмин преодолел неокрещиваемость между черной и красной смородиной, а также между смородиной и крыжовником с .помощью посредников — смородины Кызырган, полученной И. В. Мичуриным от отдаленного скрещивания, и сеянца смородины Приморский чемпион.

Опыление смесью пыльцыУспех в применении этого метода тесно связан с биологической особенностью растений — избирательной способностью оплодотворения. Пыльца некоторых форм, обычно не воспринимаемая цветками материнского растения, может оказаться все-таки пригодной для их опыления, если к ней примешана часть пыльцы самого материнского производителя или других, близких ему и легко с ним скрещивающихся сортов. И. В. Мичурин, разработавший и предложивший данный прием, полагал, что примешиваемая пыльца возбуждает пестик и тем самым способствует акту оплодотворения между чужеродными половыми клетками. С этой же целью можно применять смесь пыльцы отдаленных видов или родов.
Исходя из практических результатов применения метода смеси пыльцы, Т. Д. Лысенко высказывает предположение о том, что между различными сортами пыльцы, находящейся на рыльце цветка, и яйцеклеткой материнского растения идет обмен веществ, приводящий к скрещиванию. Кроме того, в результате взаимовлияния пыльцы нескольких форм создается физиологически новая среда, способствующая восприятию пыльцы одного из отдаленных видов или родов.
При подмешивании к чужеродной пыльце пыльцы материнской формы или близкородственных сортов, может произойти самоопыление или межсортовое скрещивание, а не отдаленная гибридизация. В целях предупреждения нежелательного скрещивания можно испытать прием подмешивания обеспложенной тем или иным способом пыльцы материнского растения и легко скрещивающихся с ним сортов, учитывая, что акту оплодотворения могут способствовать специфические ароматические вещества, содержащиеся в добавляемых пыльцевых зернах.Нанесение кусочков или прививка рылец отцовской формы к столбикам цветков материнского растения и укорачивание столбиков в цветках материнского растенияЭти приемы также разработаны и предложены И. В. Мичуриным для улучшения условий прорастания пыльцы и внедрения пыльцевых трубок отцовского сорта в ткань пестика чуждого ему вида или рода. Производятся они утром, в тихую погоду, чтобы избежать подсушивания тканей. При нанесении кусочков или прививке рылец, как отмечал И. В.Мичурин, оплодотворению способствует не столько сама ткань рылец отцовского производителя, сколько специфический запах выделяемого ею секрета, который обеспечивает прорастание пыльцы и внедрение пыльцевых трубок р чужеродный столбик.
В некоторых случаях (при несоответствии длины столбиков материнского и отцовского производителей) для получения соответствующего эффекта достаточно лишь укоротить столбики пестиков материнского растения. Этим путем, например, И. А. Толмачев добился скрещивания смородины Кран-даль с крыжовником.Метод предварительного проращивания пыльцы отцовского производителя в вытяжке их рылец того же растенияДанный прием успешно применен О. Ф. Мизгиревой при межродовом скрещивании перца с мандрагорой туркменской. Для проращивания пыльцы мандрагоры, непосредственно не прораставшей на рыльцах цветков перца, готовилась специальная среда из растертых рылец мандрагоры и нескольких капель 10—15-процентного раствора сахарозы. В эту смесь высыпалась пыльца мандрагоры, а через 2—3 часа, уже в проросшем состоянии, наносилась на рыльца кастрированных цветков перца.Опыление возрастно старых цветковЭтот способ преодоления нескрещиваемости предложен А. Я. Кузьминым. Принимая во внимание известное положение об избирательности оплодотворения растений, он полагает, что указанное свойство зависит не только от природы и возраста материнского растения, но также и от возраста каждого цветка.Наибольшей избирательностью обладает цветок в полном расцвете, а наименьшей — молодой формирующийся цветок и цветок дряхлый, находящийся в состоянии отцветания. Возрастно старый цветок, оставшийся неоплодотворенным пыльцой близкородственных растений, иногда оказывается способным принимать пыльцу отдаленного родича.
Используя этот метод, А. Я. Кузьмин добился успеха при скрещивании красной и черной смородины, малины и ежевики, смородины и крыжовника.
Практика показывает, что даже при успешном преодолении нескрещиваемости далеких по родству растений в отдельных случаях получаются уродливые, не дающие всходов семена, а иногда из жизнеспособных семян вырастают бесплодные сеянцы. В последующее время при повторном проведении гибридизации тех же растений могут быть получены более качественные семена. Преодолеть бесплодие отдаленных гибридов, иногда можно с помощью менторов — родительских форм.
Все этапы работы по скрещиванию фиксируются в полевых журналах гибридизации (табл. 3).
Поскольку пергаментные изоляторы ухудшают условия развития гибридных гроздей, во время первой ревизии (проверки результатов скрещивания), т. е. через 10—15 дней после опыления, их заменяют марлевыми мешочками.

44.Бесплодия отдаленных гибридов, его причины и способы преодоления. Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридовмежду ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентными он назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

45. Понятие об аутбридинте система самонесовместимости у растений. Аутбридинг скрещивание неродственных организмов, в том числе и принадлежащих к разным породам (сортам) и даже видам. В более узком смысле А. — система, включающая различные приёмы подбора для спаривания животных одной породы, не имеющих общих предков в 4—6 поколениях. А. используют для предотвращения вредных последствий, возникающих при длительном близкородственном разведении (Инбридинге), и для других целей.

САМОНЕСОВМЕСТИМОСТЬ — неспособность растений производить семена при самоопылении. Явление впервые было описано Й. Кёльрёйтером в середине XVIII в. у Verbascum pheoniceum (коровяк). Оно генетически детерминировано. Детерминация осуществляется либо со стороны спорофита (рыльца пестика материнского растения), либо со стороны гаметофита (пыльцевого зерна). В систему контроля самонесовместимости у разных растений входит различное количество аллельных генов. Они могут занимать либо один локус, (табак, петуния, клевер, традесканция и др.), либо два (свекла, лютик, мак, рожь, ячмень и др.). Локус самонесовместимости обозначается буквой S (self-incompatibility), а аллели этого локуса — S1, S2, S3 и т.д. Продуктами S-генов являются гликопротеины, которые регулируют процесс прорастания пыльцы.

Аутбридинг — один из методов разведения, представляющий собой, в отличие от инбридинга, неродственное скрещивание. Аутбридинг — относительно простой и надежный метод разведения, так как от поколения к поколению ожидается получение стабильных по продуктивности потомков, то есть, нет рекомбинантных потерь из-за провалов в уровне продуктивности. Аутбридинг – наиболее часто применяемый метод разведения у всех видов животных и во всех породах. Его применение было предпосылкой для создания примерно в 1850 году современных пород сельскохозяйственных животных из разнообразия местных пород, наряду использованием таких методов разведение как прилитие крови, поглощение и комбинирование для достижения этими породами сегодняшнего уровня продуктивности. Одновременно с началом использования чистопородного разведения стали образовываться племенные объединения заводчиков, и началось ведение племенных книг, называемые также «студбуки», в которых систематически описываются животные одной популяции. Поэтому аутбридинг в практическом животноводстве называют также разведение по племенной книге.

Читайте также:  После лечения гепатита с бесплодие мужское

Дата добавления: 2015-04-18 ; просмотров: 209 ; Нарушение авторских прав

источник

Скрещивание отдаленных форм во многих случаях ведет к появлению стерильных гибридов. Это ставит предел селекционной работе, так как ограничивает возможности получения новых форм. Для многих растительных организмов задача преодоления стерильности гибридов, получаемых от отдаленных скрещиваний, была решена путем экспериментальной полиплоидии. Как было указано выше, образование половых клеток (гамет) связано с процессом мейотического деления. Мейоз основан на явлении расхождения гомологичных хромосом, которые в обычной соматической клетке представлены парами. Когда мы имеем дело с гибридами, полученными при отдаленном скрещивании, то в этом случае ядро гибрида состоит из двух разных гаплоидных наборов. Каждая из хромосом не имеет себе гомологичного партнера, чтобы вступить с ним в конъюгацию и этим обеспечить нормальное расхождение одной половины хромосом в одну и другой в другую дочернюю клетку. У таких гибридов расхождение хромосом в мейозе при созревании половых клеток происходит случайно, что приводит к хаотическому распределению хромосом. В результате гаметы с нарушенной ядерной структурой часто погибают. Если же такие гаметы сливаются в процессе оплодотворения, то гибнут зиготы, возникшие при таком оплодотворении. Гибрид оказывается стерильным. Искусственное получение аллополиплоидов позволяет преодолеть стерильность отдаленных гибридов. Наследственность разных видов оказывается объединенной у форм, размножающихся половым путем.

На проявление комбинативной изменчивости у человека будет оказывать влияние система скрещивания или система браков: инбридинг и аутбридинг.

Инбридинг – родственный брак, который может быть в разной мере тесным. Брак братьев с сестрами или родителей с детьми называется первой степени родства и является наиболее тесным. Менее тесный — между двоюродными братьями и сестрами или племянниками с детьми или тетками.

1. Первое важное генетическое следствие инбридинга — повышение с каждым поколением гомозиготности потомков по всем независимо наследуемым генам.

2. Второе — разложение популяции на ряд генетически различных линий. Изменчивость инбридируемой популяции будет возрастать, тогда как изменчивость каждой выделяемой линии снижается.

Инбридинг часто ведет к ослаблению и даже вырождению потомков. У человека инбридинг: как правило, вреден. Это усиливает риск заболевания и преждевременной смерти потомков. Но известны примеры длительного тесного инбридинга, не сопровождающиеся вредными последствиями, например, родословная фараонов Египта.

Поскольку изменчивость любого вида организмов в каждый данный момент представляет конечную величину, ясно, что число предков в каком-то поколении должно бы превысить численность вида, что невозможно. Отсюда вытекает, что среди предков происходили браки в той или иной степени родства, вследствие чего фактическое число разных предков сокращалось. Это можно показать на примере человека.

У человека за столетие рождается в среднем 4 поколения. Значит, 30 поколений назад, т.е. около 1200 г. н.э. у каждого из нас должно быть 1 073 741 824 предка. Фактически же численность в ту пору не достигала 1 млрд. Приходится заключить, что в родословной каждого человека много раз встречались браки между родственниками, хотя в основном настолько отдаленными, что они не подозревали о своем родстве.

На самом деле такие браки встречались гораздо чаще, чем следует из приведенного соображения, т.к. на протяжении большей своей части истории человечество существовало в форме изолированных друг от друга народов и племенных групп.

Поэтому братство всех людей представляет собой действительно реальный генетический факт.

Аутбридинг – неродственный брак. Неродственными особями считаются — если нет общих предков в 4-6 поколениях.

Аутбридинг повышает гетерозиготность потомков, объединяет в гибридах аллели, которые существовали у родителей порознь. Вредные рецессивные гены, находившие у родителей в гомозиготном состоянии, подавляются у гетерозиготных по ним потомков. Возрастает комбинация всех генов в геноме гибридов и соответственно широко будет проявляться комбинативная изменчивость.

Комбинативная изменчивость в семье касается как нормальных, так и патологических генов, способных присутствовать в генотипе супругов. При решении вопросов медико-генетических аспектов семьи требует точного установления типа наследования заболевания — аутосомно-доминантного, аутосомно-рецессивного или сцепленного с полом, в противном случае прогноз окажется неверным. При наличии рецессивного гетерозиготного аномального гена вероятность заболевания ребенка — 25%.

Частота синдрома Дауна у детей матерей возраста 35 лет — 0, 33%, 40 лет и старше — 1,24%

Теоретическая часть. Различают два способа полового размножения: аутбридинг — неродственное размножение и инбридинг (инцухт) — близкородственное размножение.

Неродственное (аутбридинг) размножение ведет к повышению изменчивости, увеличивая гетерозиготность. Родственное (инбридинг) размножение, напротив, увеличивает гомозиготность и константность потомства в популяции, а также вызывает депрессию, связанную с переходом вредных или летальных генов в гомозиготное состояние.

Ознакомьтесь как происходит уменьшение гетерозиготности и возрастание гомозиготности при размножении самоопыляющегося растения, гетерозиготного по одной паре аллелей, и в каком поколении достигается инбредный минимум.

Принудительный инбридинг (инцухт) перекрестноопыляющихся организмов сопровождается инбредным вырождением (инцухтдепреосией): снижением показателей количественных признаков у линий и выщеплением в них погибающих, стерильных и уродливых экземпляров. И примерно в пятом инцухтпоколении достигается инбредный минимум, который совпадает с наступлением относительно полной гомозиготности.

Явлением, противоположным инбредному вырождению, является гетерозис, т. е. преобладание первого поколения гибридов по степени выраженности признаков и свойств над каждой родительской формой. Во втором поколении гетерозис заметен сравнительно слабо, а в третьем практически полностью затухает. Гетерозис является следствием возникновения удачной комбинации генов многих локусов и проявляется при скрещиваниях разных удачно подобранных гетерогенных сортов одного вида, а также при скрещиваниях отдаленных в генетическом отношении форм. У ряда сельскохозяйственных культур наиболее часто и сильно выражен гетерозис и в достаточной степени поддается управлению при скрещивании самоопыленных чистых, или инцухтлиний. Для получения гибридных семян скрещивают разные инцухтлинии между собой, либо скрещивают инцухтлинию с какимто сортом.

Различают истинный гетерозис как явление превосходства первого поколения гибрида над лучшей родительской формой; гипотетический гетерозис, когда эффект определяют по средней продуктивности обоих родителей; различают также по типу проявления — репродуктивный, соматический и приспособительный (адаптивный) гетерозис.

источник

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг — разведение в себе) и скрещивание между неродственными формами (аутбридинг — неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания — к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, то есть принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис — явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазм этической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, то есть дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация — это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г.Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов по следующей схеме Биология. / Сост. Лемеза Н.А., Морозик М.С., Морозов Е.И. — Минск: Университетское, 1999. — с.-142. :

G: Мейоз нарушен, гибрид стерилен, нормальных гамет нет.

Обработка колхицином, приводящая к удвоению числа хромосом.

F1 (колхицированное): 2n = 56

Таким методом кроме тритикале были получены многие ценные отдаленные гибриды, в частности многолетние пшенично-пырейные гибриды и др. У таких гибридов в клетках содержится полный диплоидный набор хромосом одного и другого родителя, поэтому хромосомы каждого родителя конъюгируют друг с другом и мейоз проходит нормально. Путем скрещивания с последующим удвоением числа хромосом терна и алычи удалось повторить эволюцию — произвести ресинтез вида сливы домашней.

Подобная гибридизация позволяет полностью совместить в одном виде не только хромосомы, но и свойства исходных видов. Например, тритикале сочетает многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах).

Это один из примеров использования в селекции полиплоидии, точнее аллоплоидии. Еще более широко используется автополиплоидия.

При использовании новых методов селекции получены новые сорта растений. Так, академиком Н.В. Цициным путем отдаленной гибридизации пшеницы с пыреем и последующей полиплоидизации выведены многолетние пшеницы. Такими же методами получены перспективные сорта новой зерновой культуры тритикале. Для селекции вегетативно размножаемых растений используются соматические мутации (они использовались и И.В. Мичуриным, но он называл их почковыми вариациями). Широкое применение получили многие методы И.В. Мичурина после их генетического осмысления, хотя некоторые из них теоретически так и не разработаны. Большие успехи достигнуты в использовании результатов мутационной селекции в выведении новых сортов зерновых, хлопчатника и кормовых культур. Однако наибольший вклад во все возделываемые сорта внесли образцы коллекции мирового генофонда культурных растений, собранные Н.И. Вавиловым и его учениками.

Отдаленная гибридизация домашних животных менее продуктивна, чем у растений, так как преодолеть стерильность отдаленных гибридов невозможно, если она проявляется. Правда, в некоторых случаях отдаленная гибридизация видов с родственными хромосомными наборами не приводит к нарушению мейоза, а ведет к нормальному слиянию гамет и развитию зародыша у отдаленных гибридов, что позволило получить некоторые ценные породы, сочетающие полезные признаки обоих использованных в гибридизации видов. Успешно завершились попытки улучшить породы местного крупного рогатого скота скрещиванием его с зебу и яками.

Следует отметить, что не всегда необходимо добиваться плодовитого потомства от отдаленной гибридизации. Иногда полезны и стерильные гибриды, как, например, веками использующиеся мулы — стерильные гибриды лошади и осла, отличающиеся выносливостью и долговечностью.

У пшеницы карликовость доминировала над высокорослостью. В скрещиваниях получены расщепления по фенотипу 3: 1 и 1:

1. Определите генотипы и фенотипы родителей.

Расщепление по фенотипу 3: 1 говорит о моногибридном скрещивании, следовательно, можно сделать вывод, что у обоих родителей доминировала карликовость, то есть фенотип родителей такой же как и фенотип первого поколения. Во втором поколении гибридов от скрещиваемых наблюдается расщепление на исходные родительские признаки в отношении: 3 части доминантных и одна часть рецессивных.

Расщепление по первому гену 1: 1 говорит о том, что одна родительская форма является гомозиготной, а другая гетерозиготной.

От скрещивания устойчивого к головне фуркатного ячменя с восприимчивым к головне остистым ячменем получили гибриды F1 устойчивые к головне с фуркатным колосом. Что ожидают по фенотипу и генотипу в анализирующем скрещивании, если наследование признаков независимое?

В случае полного доминирования по внешнему проявлению признака (по фенотипу) судить о генотипе организма невозможно, так как и доминантная гомозигота (ААВВ) и гетерозигота (АаВв) будут обладать фенотипически доминантными признаками, в данном случае устойчивость к головне с фуркатным колосом. Для того, чтобы отличить доминантную гомозиготу от гетерозиготы, применяется анализирующее скрещивание, т.е. скрещивание гетерозиготы с рецессивной гомозиготой.

Анализирующее скрещивание позволяет определить генотип особей с доминантным фенотипом. Это возможно при скрещивании с рецессивной гомозиготой по всем анализируемым генам, причем независимо от их числа. При таком скрещивании каждый аллель анализируемой формы проявляется на фоне второго рецессивного аллеля: доминантный потому, что подавляет действие рецессивного, а рецессивный потому, что находится в состоянии рецессивной гомозиготы. Поскольку проявляется каждый аллель, получим расщепление 1: 1 по каждому гетерозиготному фактору и не получим по гомозиготным.

У кукурузы растения нормальной высоты имеют в своем генотипе два неаллельных доминантных гена. Гомозиготность по рецессивным аллелям даже одного из этих генов приводит к возникновению карликовых форм. От скрещивания двух карликовых растений получили гибриды F1 нормальной высоты. Какие результаты по генотипу и фенотипу ожидаются от самоопыления растений F1 в потомстве F2?

В потомстве F2 после самоопыления будет наблюдаться расщепление. Карликовую форму имеют только растения, несущие доминантные аллели обоих генов. Карликовость растений возможна только при наличие обоих доминантных аллелей.

Одна из цепочек ДНК имеет следующее чередование нуклеотидов: Г-Т-А-А-Т-Г-Ц-Ц-Т-Г-Ц-Ц. Укажите схему транскрипции и трансляции генетической информации с данного участка ДНК.

Транскрипция происходит не на всей молекуле ДНК, а лишь на небольшом ее участке, соответствующем определенному гену. Она может протекать одновременно на нескольких генах одной хромосомы и на генах, расположенных на разных хромосомах. В результате транскрипции образуется иРНК, последовательность нуклеотидов которой является точной копией последовательности нуклеотидов матрицы — одного или группы рядом расположенных генов. Так, если в молекуле ДНК имеется азотистое основание — цитозин (Ц), то в РНК — гуанин (Г), и наоборот. В ДНК комплементарной парой является аденин — тимин. Однако в состав РНК вместо тимина входит урацил.

Трансляция начинается со стартового кодона АУГ. Отсюда каждая рибосома прерывисто, триплет за триплетом движется вдоль молекулы иРНК, что сопровождается ростом полипептидной цепочки.

Выстраивание аминокислот в соответствии с кодонами иРНК осуществляется на рибосомах при помощи транспортной РНК. Благодаря определенному расположению комплементарных нуклеотидов цепочка тРНК имеет форму, напоминающую лист клевера. При реализации генетической информации каждая тРНК присоединяет и переносит к месту синтеза белка соответствующую аминокислоту.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *