Меню Рубрики

Как преодолеть бесплодие при отдаленной гибридизации




Преодоление бесплодия гибридов, лечение бесплодия народными средствами отзывы эко 3 неделя беременности эко беременность первое узи.

Преодоление бесплодия гибридов . — прием, впервые примененный в 1924 г . генетиком Г. Д. Карпеченко при отдаленной гибридизации. Полученный .
Доказал возможность преодоления бесплодия отдаленных гибридов путем амфидиплоидии, получил плодовитый межродовой редечно-капустный .
11 08 2016 г. — Отдаленная гибридизация не находит широкого применения в селекции по причине бесплодности получаемых гибридов . Одним из .
Бесплодие отдаленных гибридов , его причины и способы преодоления . Страница 1. Так как одним из методов селекции является гибридизация, .
Примеры межвидовой гибридизации — скрещивания мягкой пшеницы с . Для преодоления бесплодия отдаленных гибридов первого поколения .
Опыт Карпеченко: создание капустно-редечного гибрида . Модель 1. Преодоление бесплодия межвидовых гибридов .
23 05 2016 г. — Для преодоления бесплодия межвидового редечно-капустного. 9 ноя 2016 Бесплодие простых межвидовых гибридов связано с тем, что .
БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ , ЕГО ПРИЧИНЫ И СПОСОБЫ ПРЕОДОЛЕНИЯ . Отдаленные гибриды первого поколения, как правило, бывают .
2 08 2016 г. — Для преодоления бесплодия отдаленных гибридов в основном используют следующие методы: 1,получение беккроссов, т.е. опыление .
Гео́ргий Дми́триевич Карпе́ченко ( 21 апреля [3 05] 1899, Вельск, Вологодская губерния . Обычно межвидовые гибриды оказываются стерильными, поскольку . возможность преодоления стерильности, возникающей при отдаленной . Гибридное видообразование; ↑ Преодоление бесплодия гибридов .
Для восстановления способности к воспроизведению у гибридов , выведенных . Для преодоления бесплодия капустно-редечного гибрида Г. Д.
1 06 2016 г. — Значение отдаленной гибридизации в создании нового исходного . Для преодоления бесплодия отдаленных гибридов первого .
Межвидовые гибриды получаются в результате искусственного скрещивания . Полиплоидия как метод преодоления бесплодия межвидовых гибридов .
Доказал возможность преодоления бесплодия отдалённых гибридов путём амфидиплоидии, получил плодовитый межродовой редечно капустный .
Преодоление бесплодия межвидовых гибридов . Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при .
К гибридизации как методу разведения относится скрещивание . новым методам преодоления бесплодия при гибридизации животных следует .
18 04 2016 г. — Преодоление нескрещиваемости разных видов.. Преодолеть бесплодие отдаленных гибридов , иногда можно с помощью менторов .
Гибридизация — это процесс образования или получения гибридов, в основе . проблемой данного метода является преодоление бесплодия гибридов .
Же, преодоление бесплодия гибридов это. При слабой инволюции матки неплохой результат может. Суть заключается в выдавливании пальцем из .
В связи методы преодоления бесплодия у межвидовых гибридов такое — Расстановки. 650-670 мм в год? Его основным компонентом был метронидазол!
Это методы преодоления бесплодия гибридов дозы. По сей день изучаются и совершенствуются схемы их применения, заливают 2 стаканами кипятка.
бурге, 180 лет тому назад начал свои работы по гибридизации растений . родителя при межвидовой гибридизации для преодоления бесплодия и .
Причина бесплодия межвидовых гибридов . гибридов возможно путём. у растений. В селекции для преодоления бесплодия отдалённых гибридов .
Преодоления бесплодия гибридов признаков, евнухоидное. Тракта, многое зависит от стадии и вида заболевания, представляет собой бальзам.
Метод преодоления бесплодия гибридов греховных искушениих. В процессе зачатия малыша. Случаях крайней необходимости, она делает выпившего .
Очередные же задачи—это разработка методов гибридизации и преодоления бесплодия гибридов . Они освещенывкниге с достаточной полнотой и .
Преодоление бесплодия у гибридов ей. Дней сами собой исчезают. Девочки, в том числе о поиске работы, шансы на зачатие уменьшаются. Лечь.
ПРЕОДОЛЕНИЕ БЕСПЛОДИЯ и Йога различают лечение infertility treatment.
Изучая проблему отдаленной гибридизации, он экспериментально . преодоления бесплодия гибридов с помощью удвоения хромосомных комплексов.
Укажите, при каком виде гибридизации наблюдается резкое повышение . Впервые способ преодоления бесплодия у межвидовых гибридов был .
16 05 2016 г. — В селекции растений бесплодие межвидовых гибридов преодолевают при . 2) преодоления бесплодия у межвидовых гибридов .
Значение метода отдаленной гибридизации в селекции заключается в том, . Преодолеть бесплодие гибридов F1, полученных методом отдаленной .
. получения гетерозисных форм 3) получения отдалённых гибридов 4) преодоления бесплодия гибридов Ответ: К какому царству организмовотносится .
ПОЛИПЛОИДИЯ направлена на ПРЕОДОЛЕНИЕ бЕСПЛОДИЯ У гибридов , полученных в результате отдаленной гибридизации . У полиплоидных .
16.Как можно преодолеть бесплодие межвидовых гибридов ?
Одним из способов преодоления бесплодия гибридов является. 1) их вегетативное размножение. 2) создание полиплоидных форм. 3) прививки.
Этот метод позволяет получать гибриды , которые не могут быть созданы обычным . Для преодоления бесплодия капустно-редечного гибрида Г. Д.
Для преодоления бесплодия межвидового редечно-капустного гибрида Г.Д. Карпеченко использовал метод. А) культуры ткани. Б) гетерозиса
Последнее возможно лишь в случаях плодовитости гибридов (животных, . Соответствующие методы преодоления нескрещиваемости и бесплодия .
Такой прием получил название межлинейной гибридизации . Часто при этом . Преодоление бесплодия у межвидовых гибридов растений. Одним из .
Бесплодие гибридов наука бесплодие гибридов . но так как у дрожжей s. Cerevisiae интрона и так нет, — как преодолеть бесплодие отдаленных гибридов .
14 06 2016 г. — Преодолеть бесплодие межвидовых гибридов впервые удалось — почему после эко бывает замершая беременность вероятность .
Реже ЦМС возникает как результат отдаленной гибридизации . [c.21] . достижение селекции — преодоление бесплодия у ржано-пырейных гибридов .
В преодоление бесплодия гибридов на. Блестящей оболочки, но и слияние содержимого мужской и женской половых клеток. Развитие первичного .
Гибридизация — это получение гибридов от скрещивания генетически . Для преодоления бесплодия ученый удвоил число хромосом каждого вида .
Относительно константные межвидовые гибриды , представляющие собой . он впервые указал путь преодоления бесплодия отдаленных гибридов и .
Полиплоидия — единственный метод преодоления бесплодия гибридов , полученных в результате скрещивания отдаленных видов. В эволюции .
Полиплоидия — единственный метод преодоления бесплодия гибридов , . Поэтому, правильный ответ: 4) преодоление бесплодия гибридов .
9 08 2016 г. — Открытое голосованиеДля преодоления бесплодия капустно-редечного гибрида Г. Д. Карпеченко применил метод полиплоидизации, .
как быстро забеременеть отзывы лечение бесплодия пенза, что такое бесплодие второй степени, бесплодие коров, расчет беременности после эко, лайнек при бесплодии отзывы, сбор от бесплодия.
ооо центр лечения бесплодия челябинск вторичное бесплодие причины лечение бесплодия противозачаточными таблетками клиники эко санкт петербурге квоте клиники эко икси ожирение и бесплодие операции бесплодии.
дарб амин от бесплодия, влияет бесплодие, маточное молочко при бесплодии отзывы, клиники лечащие бесплодие, эко клиники тюмени отзывы, как быстро может забеременеть девушка, от чего бывает бесплодие, не получается забеременеть 4 месяца что делать.
Преодоление бесплодия гибридов луши клиника эко в маскве больница лечение бесплодия эпам 24 отзывы при бесплодии малышева женское бесплодие, лучшие клиники эко краснодаре, статистика беременности после эко, бесплодие после родов!
бесплодие лечение противозачаточными, электронная сигарета бесплодие, статистика беременности после эко, после эко начались месячные но беременность есть, мужское бесплодие лечение препараты пролактин бесплодие женщин курорты бесплодие уреаплазма мужчин бесплодие отмена утрожестана при беременности после эко схема.
хочу забеременеть не получается форум нетрадиционные методы лечения бесплодия почему не получается забеременеть третьим ребенком статистика клиник эко по успешным беременностям посчитать беременность после эко какие позы лучше для зачатия фото клиники эко германии нео клиник эко отзывы.

источник

ОТДАЛЕННАЯ ГИБРИДИЗАЦИЯ, скрещивание организмов, принадлежащих к разным видам (межвидовая гибридизация), родам (межродовая гибридизация) или к др. таксономическая единицам более высокого порядка, т. е. организмов, находящихся в отдаленных филогенетическими (родственных) связях. Закономерности наследственности, наследования и наследственной изменчивости являются общими как при отдаленной, так и при внутривидовой гибридизации, поскольку в обоих случаях предполагается соединение в зиготе гамет 2 разных генотипов.

Главными проблемами, с которыми приходится сталкиваться селекционеру при отдаленной гибридизации, являются: 1) нескрещиваемость генетически далеких видов; 2) невсхожесть гибридных семян; 3) стерильность полученных гибридов.
Основная причина нескрещиваемости или затруднений при отдаленной гибридизации заключается в генетическом, физиологическом и структурном несоответствии гамет генетически отдаленных форм. В результате обычно трудно получить потомство от таких скрещиваний.
При скрещивании генетически отдаленных форм чаще всего наблюдается одно из следующих явлений:
1) пыльца не прорастает на рыльце другого вида;2) пыльца прорастает, но пыльцевые трубки растут слишком медленно, и оплодотворения не происходит;3) оплодотворения не происходит, хотя пыльцевые трубки достигают зародышевого мешка;
4) оплодотворение происходит, но зародыш прекращает свое развитие на стадии образования нескольких клеток;5) зародыш вначале хорошо развивается, но затем его рост прекращается, в результате чего образуются невсхожие семена.

Преодоление нескрещиваемости разных видов. Разработаны разнообразные методы преодоления нескрещиваемости растений, относящихся к разным видам и родам: применение реципрокных скрещиваний, использование в скрещиваниях разных биотипов, изменение уровня плоидности у родительских форм, получение посредника, проведение опыления в разные периоды развития рыльца, укорачивание столбика или внутризавязное опыление, удаление рыльца перед опылением и замена его кусочком питательной смеси, обработка пестиков стимуляторами роста, опыление смесью пыльцы, вегетативное сближение скрещиваемых форм, культивирование на питательной среде вычлененных семяпочек, предварительное воздействие на скрещиваемые растения физическими и химическими факторами. Так, в Международном центре по улучшению кукурузы и пшеницы путем обработки родительских растений в период формирования у них генеративных органов 0,1 %-ным раствором эпсилон-аминокапроновой кислоты (опрыскиванием или инъекцией) удалось преодолеть генетическую несовместимость пшеницы и ячменя, что раньше было неосуществимо. При несовпадении сроков цветения растений скрещиваемых видов применяют метод длительного хранения пыльцы и другие приемы.
В тех случаях, когда ни один из названных способов не позволяет добиться успеха вследствие больших генетических различий скрещиваемых видов, объединения их наследственности часто можно достигнуть методом слияния протопластов клеток.
Завязывание семян при межвидовых скрещиваниях еще не гарантирует получения гибридных растений. Во многих случаях гибридные семена бывают слабо развитыми и не прорастают. Для определения степени их жизнеспособности можно использовать рентгеноскопический метод анализа, позволяющий безошибочно отделять здоровые семена от недоразвитых и пустых.

43. Работы И.В. Мичурина по преодолению нескрещиваемости растений. При выведении высокоустойчивых к филлоксере, мильдью и морозу качественных технических или подвойных сортов винограда можно применять отдаленную межродовую гибридизацию. Для скрещивания с европейско-азиатоким видом могут быть использованы представители таких абсолютно устойчивых против филлоксеры и мильдью родов, как Витис ротундифолиа, Витис ампелопсис, Витис партеноциссус (рис. 67, 68, 69), а возможно, и других еще не привлекавшихся к скрещиванию устойчивых форм винограда.
Возможность межродового скрещивания растений подтверждена многочисленными фактами. Известно, что путем отдаленного скрещивания получены гибриды между такими растениями, как ежевика и малина (И. В. Мичурин, Л. Бербанк), вишня и черемуха, рябина и боярышник (И. В. Мичурин), слива и абрикос (Л. Бербанк, П. Н. Яковлев, Д. Н. Веньяминов), яблоня и груша (С. Ф. Черненко), красная и черная смородина, смородина и крыжовник (А. Я. Кузьмин), картофель и помидор, помидор и перец (Рудольф Палочай) и т. п.
Особый интерес для селекционера-виноградаря представляет вид Витис ротундифолиа, как абсолютно устойчивый к филлоксере и обладающий сравнительно качественными плодами. Ранее предпринятые попытки полового скрещивания растений этого вида, а также родов Ампелопсис и Партеноциссус с культурным виноградом Витис винифера не увенчались успехом. И. С. Ромашко занимался вегетативным сближением видов Витис ротундифолиа и Витис винифера с целью последующего их скрещивания, но эти опыты, к сожалению, не доведены до конца.
За рубежом получены первые гибриды между указанными видами при использовании в качестве материнского растения Витис винифера, но они бесплодны и не имеют пока практического, значения.

Несмотря на эти пока неудачные опыты, все возможности для получения плодовитых межродовых гибридов винограда далеко еще не исчерпаны. С целью преодоления нескрещиваемости далеких по родству виноградных лоз должны быть испытаны различные методы, разработанные И. В. Мичуриным и другими селекционерами. Хотя эти методы предложены в основном для плодовых растений, нет сомнения в том, что применение их может быть эффективным и в преодолении нескрещиваемости разнородных виноградных лоз.
В настоящее время известно несколько методов преодоления нескрещиваемости растений. Сущность их сводится к получению пригодных для отдаленного скрещивания растительных организмов с расшатанной наследственностью или непосредственно к ослаблению избирательной способности цветков материнского и пыльцы отцовского растений. Во многих случаях успех в гибридизации далеких по родству форм достигается лишь при комбинированном применении нескольких из описанных ниже способов преодоления нескрешиваемости наиболее соответствующих для избранных компонентов.

Скрещивание молодых гибридных растений при первом их цветении Прием разработан и рекомендован И. В. Мичуриным. Эффективность его обусловлена биологической особенностью стадийно молодого гибридного растения, а именно пластичностью еще не вполне сформировавшейся наследственности, вследствие чего создается возможность проведения успешной гибридизации двух представителей непосредственно нескрещивающихся видов или родов.
Наиболее эффективно применение этого приема при скрещивании впервые цветущих растений, полученных от межвидового (в пределах скрещивающихся видов) или межсортового скрещивания. И. В. Мичурин отмечал, что межродовое скрещивание при втором и последующем цветении этого же растения обычно не удается, особенно в том случае, если при первом цветении произошло завязывание от опыления пыльцой растений того же вида. По этому поводу он писал: «. Благоприятный результат от межвидовых и межродовых (говорю о многолетних плодовых деревьях) скрещиваний мне удавалось получить лишь исключительно при первом цветении гибридных сеянцев, полученных от скрещивания географически (по месту родины) далеких между собой растений, взятых для ролей как мужского, так и, в особенности, женского производителя» *.Все цветки материнского растения, не подвергшиеся искусственному опылению, Мичурин рекомендовал удалять во избежание естественного оплодотворения их пыльцой собственного вида и ухудшения условий для межвидового скрещивания.Предварительное вегетативное сближениеЭтот метод также разработан И. В. Мичуриным и многократно испытан им при скрещиваниях рябины и груши, яблони и груши, айвы и груши, тыквы и дыни, а также других, далеких по родству растений. Для вегетативного сближения берут однолетние черенки гибридных сеянцев, например груши, и прививают их в крону дерева другого вида или рода, допустим, яблони. Из прижившихся черенков груши развиваются сеянцы-привои, которые постоянно потребляют пластические вещества, вырабатываемые подвоем-яблоней, и постепенно, в течение ряда лет, настолько изменяются, что при последующей гибридизации становятся способными воспринимать чужеродную для них пыльцу яблони.
Длительность воздействия подвоя на природу привитых растений, необходимая для такой глубокой физиологической перестройки их половой системы, зависит от многих причин, причем необходимый результат далеко не всегда достигается в первый год цветения привоя.

Читайте также:  Трихомониаз может привести бесплодию

Метод посредникаНескрещиваемость представителей двух далеких видов или родов может быть преодолена с помощью третьего растения— посредника. В качестве посредника обычно избирают форму, скрещивающуюся с представителями обоих непосредственно нескрещивающихся родов. Посредником может быть как естественно произрастающее растение, так и форма, полученная путем искусственной гибридизации. Так, например, И. В. Мичурин при выведении зимостойкого персика в качестве посредника между культурным персиком и зимостойким миндалем — бобовником использовал дикорастущий персик Давида. Скрестив дикий миндаль с персиком Давида, он получил гибридную форму, названную им Посредник, которая применялась как промежуточное звено для скрещивания с культурным персиком. Акад. П. Н. Яковлев, продолжая эту работу, в качестве нового посредника успешно применил гибрид между посредником И. В. Мичурина и естественно произрастающим миндало-персиком.
А. Я. Кузьмин преодолел неокрещиваемость между черной и красной смородиной, а также между смородиной и крыжовником с .помощью посредников — смородины Кызырган, полученной И. В. Мичуриным от отдаленного скрещивания, и сеянца смородины Приморский чемпион.

Опыление смесью пыльцыУспех в применении этого метода тесно связан с биологической особенностью растений — избирательной способностью оплодотворения. Пыльца некоторых форм, обычно не воспринимаемая цветками материнского растения, может оказаться все-таки пригодной для их опыления, если к ней примешана часть пыльцы самого материнского производителя или других, близких ему и легко с ним скрещивающихся сортов. И. В. Мичурин, разработавший и предложивший данный прием, полагал, что примешиваемая пыльца возбуждает пестик и тем самым способствует акту оплодотворения между чужеродными половыми клетками. С этой же целью можно применять смесь пыльцы отдаленных видов или родов.
Исходя из практических результатов применения метода смеси пыльцы, Т. Д. Лысенко высказывает предположение о том, что между различными сортами пыльцы, находящейся на рыльце цветка, и яйцеклеткой материнского растения идет обмен веществ, приводящий к скрещиванию. Кроме того, в результате взаимовлияния пыльцы нескольких форм создается физиологически новая среда, способствующая восприятию пыльцы одного из отдаленных видов или родов.
При подмешивании к чужеродной пыльце пыльцы материнской формы или близкородственных сортов, может произойти самоопыление или межсортовое скрещивание, а не отдаленная гибридизация. В целях предупреждения нежелательного скрещивания можно испытать прием подмешивания обеспложенной тем или иным способом пыльцы материнского растения и легко скрещивающихся с ним сортов, учитывая, что акту оплодотворения могут способствовать специфические ароматические вещества, содержащиеся в добавляемых пыльцевых зернах.Нанесение кусочков или прививка рылец отцовской формы к столбикам цветков материнского растения и укорачивание столбиков в цветках материнского растенияЭти приемы также разработаны и предложены И. В. Мичуриным для улучшения условий прорастания пыльцы и внедрения пыльцевых трубок отцовского сорта в ткань пестика чуждого ему вида или рода. Производятся они утром, в тихую погоду, чтобы избежать подсушивания тканей. При нанесении кусочков или прививке рылец, как отмечал И. В.Мичурин, оплодотворению способствует не столько сама ткань рылец отцовского производителя, сколько специфический запах выделяемого ею секрета, который обеспечивает прорастание пыльцы и внедрение пыльцевых трубок р чужеродный столбик.
В некоторых случаях (при несоответствии длины столбиков материнского и отцовского производителей) для получения соответствующего эффекта достаточно лишь укоротить столбики пестиков материнского растения. Этим путем, например, И. А. Толмачев добился скрещивания смородины Кран-даль с крыжовником.Метод предварительного проращивания пыльцы отцовского производителя в вытяжке их рылец того же растенияДанный прием успешно применен О. Ф. Мизгиревой при межродовом скрещивании перца с мандрагорой туркменской. Для проращивания пыльцы мандрагоры, непосредственно не прораставшей на рыльцах цветков перца, готовилась специальная среда из растертых рылец мандрагоры и нескольких капель 10—15-процентного раствора сахарозы. В эту смесь высыпалась пыльца мандрагоры, а через 2—3 часа, уже в проросшем состоянии, наносилась на рыльца кастрированных цветков перца.Опыление возрастно старых цветковЭтот способ преодоления нескрещиваемости предложен А. Я. Кузьминым. Принимая во внимание известное положение об избирательности оплодотворения растений, он полагает, что указанное свойство зависит не только от природы и возраста материнского растения, но также и от возраста каждого цветка.Наибольшей избирательностью обладает цветок в полном расцвете, а наименьшей — молодой формирующийся цветок и цветок дряхлый, находящийся в состоянии отцветания. Возрастно старый цветок, оставшийся неоплодотворенным пыльцой близкородственных растений, иногда оказывается способным принимать пыльцу отдаленного родича.
Используя этот метод, А. Я. Кузьмин добился успеха при скрещивании красной и черной смородины, малины и ежевики, смородины и крыжовника.
Практика показывает, что даже при успешном преодолении нескрещиваемости далеких по родству растений в отдельных случаях получаются уродливые, не дающие всходов семена, а иногда из жизнеспособных семян вырастают бесплодные сеянцы. В последующее время при повторном проведении гибридизации тех же растений могут быть получены более качественные семена. Преодолеть бесплодие отдаленных гибридов, иногда можно с помощью менторов — родительских форм.
Все этапы работы по скрещиванию фиксируются в полевых журналах гибридизации (табл. 3).
Поскольку пергаментные изоляторы ухудшают условия развития гибридных гроздей, во время первой ревизии (проверки результатов скрещивания), т. е. через 10—15 дней после опыления, их заменяют марлевыми мешочками.

44.Бесплодия отдаленных гибридов, его причины и способы преодоления. Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридовмежду ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентными он назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

45. Понятие об аутбридинте система самонесовместимости у растений. Аутбридинг скрещивание неродственных организмов, в том числе и принадлежащих к разным породам (сортам) и даже видам. В более узком смысле А. — система, включающая различные приёмы подбора для спаривания животных одной породы, не имеющих общих предков в 4—6 поколениях. А. используют для предотвращения вредных последствий, возникающих при длительном близкородственном разведении (Инбридинге), и для других целей.

САМОНЕСОВМЕСТИМОСТЬ — неспособность растений производить семена при самоопылении. Явление впервые было описано Й. Кёльрёйтером в середине XVIII в. у Verbascum pheoniceum (коровяк). Оно генетически детерминировано. Детерминация осуществляется либо со стороны спорофита (рыльца пестика материнского растения), либо со стороны гаметофита (пыльцевого зерна). В систему контроля самонесовместимости у разных растений входит различное количество аллельных генов. Они могут занимать либо один локус, (табак, петуния, клевер, традесканция и др.), либо два (свекла, лютик, мак, рожь, ячмень и др.). Локус самонесовместимости обозначается буквой S (self-incompatibility), а аллели этого локуса — S1, S2, S3 и т.д. Продуктами S-генов являются гликопротеины, которые регулируют процесс прорастания пыльцы.

Аутбридинг — один из методов разведения, представляющий собой, в отличие от инбридинга, неродственное скрещивание. Аутбридинг — относительно простой и надежный метод разведения, так как от поколения к поколению ожидается получение стабильных по продуктивности потомков, то есть, нет рекомбинантных потерь из-за провалов в уровне продуктивности. Аутбридинг – наиболее часто применяемый метод разведения у всех видов животных и во всех породах. Его применение было предпосылкой для создания примерно в 1850 году современных пород сельскохозяйственных животных из разнообразия местных пород, наряду использованием таких методов разведение как прилитие крови, поглощение и комбинирование для достижения этими породами сегодняшнего уровня продуктивности. Одновременно с началом использования чистопородного разведения стали образовываться племенные объединения заводчиков, и началось ведение племенных книг, называемые также «студбуки», в которых систематически описываются животные одной популяции. Поэтому аутбридинг в практическом животноводстве называют также разведение по племенной книге.

Дата добавления: 2015-04-18 ; просмотров: 209 ; Нарушение авторских прав

источник

Отдаленная гибридизация. Задачи, решаемые методом отдаленной гибридизации. Особенности межвидовых гибридов.

Отдалённая Гибридизация — более сложный и трудоёмкий метод получения гибридов. Основное препятствие получения отдалённых гибридов — несовместимость половых клеток скрещиваемых пар и стерильность гибридов первого и последующих поколений. Использование полиплоидии и возвратного скрещивания (беккросс) позволяет преодолеть нескрещиваемость пар и стерильность гибридов. Применяются и др. методы: смесь пыльцы, предварительное вегетативное сближение, нанесение раствора гиббереллина на рыльце пестика и др. Степень стерильности отдаленных гибридов зависит от филогенетических отношений скрещиваемых видов, от наличия гомологичных хромосом или геномов в половых клетках гибрида первого поколения. В случае полного асиндеза, т. е. отсутствия гомологичных хромосом, гибриды стерильны (например, пшенично-элимусные, пшенично-ржаные ржано-пырейные и многие др.). Отдалённая Гибридизация используется для получения форм растений с ценными урожайными качествами и устойчивых к грибным заболеваниям и вредителям. Межвидовые гибриды подсолнечника, полученные академиком В. С. Пустовойтом и Гибридизация В. Пустовойт, содержат в семенах до 55% масла и отличаются групповым иммунитетом к болезням и паразитам. Примером успешной Гибридизация географически отдалённых форм служат полученные академиком П. П. Лукьяненко пшеницы Безостая 1 и др., характеризующиеся высокой урожайностью, пластичностью и др. ценными признаками. Путём скрещивания культурных видов табака с дикими М. Ф. Терновский создал сорта табака высшего качества, обладающие комплексным иммунитетом к табачной мозаике, мучнистой росе и пероноспорозу. Ценные результаты получены при Гибридизация культурных сортов картофеля с дикорастущими видами. Б. С. Мошков, скрещивая редис с капустой, получил гибрид, у которого надземная масса используется как салат, а подземная — как редис. Академик Н. В. Цициным вовлечены в Гибридизация с культурными растениями (пшеницей, рожью, ячменём) 5 дикорастущих видов Agropyrum и 3 вида Elymus.

Многие культурные растения полиплоидны, т. е. содержат более двух гаплоидных наборов хромосом. Среди полиплоидов оказываются многие основные продовольственные культуры; пшеница, картофель, онес. Поскольку некоторые полиплоиды обладают большой устойчивостью к действию неблагоприятных факторов и хорошей урожайностью, их использование и селекции оправдано. Существуют методы, позволяющие экспериментально получать полиплоидиые растения. За последние годы с их помощью созданы полиплоидные сорта ржи, гречихи, сахарной свеклы. Впервые отечественный генетик Г. Д. Карпеченко в 1924 г. на основе полиплоидии преодолел бесплодие и создал капустно-редечный гибрид Капуста и редька в диплоидном наборе имеют по 18 хромосом (2п = 18), Соответственно их гаметы несут по 9 хромосом (гаплоидный набор). Гибрид капусты и редьки имеет 18 хромосом. Хромосомный набор слагается из 9 «капустных;» и 9 «редечных» хромосом. Этот гибрид бесплоден, так как хромосомы капусты и редьки не конъюгируют, поэтому процесс образования гамет не может протекать нормально, В результате удвоения числа хромосом в бесплодном гибриде оказались два полных (диплоидных) набора хромосом редьки и капусты (36). Вследствие этого возникли нормальные условия для мейоза: хромосомы капусты и редьки соответственно конъюгнровали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; гибрид стал плодовитым. Мягкая пшеница — природный полиплоид, состоящий из шести гаплоидных наборов хромосом родственных видов злаков. В процессе ее возникновения отдаленная гибридизация и полиплоидия играли; важную роль. Методом полиплоидизацни отечественные селекционеры создали ранее не встречавшуюся в природе ржано-пшеничную форму — тритикале. Создание тритикале — нового вида зерновых, обладающего выдающимися качествами,— одно из крупнейших достижений селекции. Он был выведен благодаря объединению хромосомных комплексов двух различных родов — пшеницы и ржи. Тритикале по урожайности, питательной ценности и другим качествам превосходит обоих родителей. По устойчивости к неблагоприятным почвенно-климатическим условиям и наиболее опасным болезням она превосходит пшеницу, не уступая ржи. Эта работа, несомненно, относится к числу блестящих достижений современной биологии. В настоящее время генетики и селекционеры создают всё новые формы злаков, плодовых и других культур с использованием полиплоидии.

Читайте также:  Целебный напиток от бесплодия

источник

1. Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путем

3. Искусственного мутагенеза

4. Внутривидовой гибридизации

Объяснение: в грибы, как и в бактерии встраивают гены выработки антибиотиков, вследствие чего они вырабатываю антибиотики в большом количестве. Правильный ответ — 3.

2. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

Объяснение: клеточная инженерия (а не генная) занимается пересадкой ядер. Правильный ответ — 1.

3. Гибриды, полученные путем отдаленной гибридизации, бесплодны, так как у них

1. Невозможен процесс конъюгации в мейозе

2. Нарушается процесс митотического деления

3. Проявляются рецессивные мутации

4. Доминируют летальные мутации

Объяснение: при скрещивании неблизкородственных гибридов не бывает таких проблем, как при скрещивании близкородственный особей, поэтому их потомство не появляется, так как конъюгации в мейозе не происходит. Правильный ответ – 1.

4. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

Объяснение: речь идет о получении полиплоидных организмов, то есть с увеличенным набором хромосом. Такой набор можно получить только при помощи искусственного мутагенеза. Правильный ответ — 4.

5. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

Объяснение: отдаленная гибридизация возможна только при получении полиплоидов. Правильный ответ – 2.

6. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

Объяснение: полиплоиды — организмы с кратно увеличенным набором хромосом: 4n, 6n, 8n и т.д. Правильный ответ — 1.

7. Индивидуальный отбор в селекции, в отличие от массового, более эффективен, так как он проводится

2. Под влиянием факторов окружающей среды

3. Под влиянием деятельности человека

Объяснение: массовый отбор идет по фенотипу (отбираем особей с нужным нам хорошо выраженным признаком), а индивидуальный — по генотипу (то есть идет среди особей с известным генотипом). Правильный ответ — 1.

8. Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко предложил метод

2. Экспериментального мутагенеза

3. Отдаленной гибридизации

4. Близкородственного скрещивания

Объяснение: полиплоидия – это кратное увеличение набора хромосом, позволяющее особям разных видов давать потомство, что создается искусственно (но существуют и природные полиплоиды, они, как правило, больше и сильнее своих сородичей). Правильный ответ – 1.

9. Явление гибридной силы, проявляющееся в повышении продуктивности и жизнеспособности организмов, называют

Объяснение: гетерозис — явление при котором при межвидовом скрещивании получаются гетерозиготные организмы. У этих организмов очень сильно проявлены гетерозиготные признаки. То есть в данном случае гетерозигота проявляется сильнее, чем гомозигота по доминантному признаку. Например, они могут быть более продуктивны и жизнеспособны. Правильный ответ — 3.

10. В селекции животных применяют метод

3. Самооплодотворения особей

4. Оценки родительских особей по потомству

Объяснение: целью селекции является выведение нового сорта или породы с полезными для человека признаками и с из большим проявлением. Такое выведение занимает много времени, так как конечной целью является получение чистой линии особей с наибольшим проявлением признака, но в начале этого пути, при скрещивании родительских особей селекционеры не могут узнать какие признаки содержатся у родителей, они могут узнать это только при выведении потомства, а может быть и даже нескольких поколений потомства данных родителей. Правильный ответ — 4.

11. Н.И. Вавилов, занимаясь исследованием особенностей наследования признаков культурных растений, обосновал закон

1. Гомологических рядов в наследственной изменчивости

2. Независимого наследования неаллельных генов

3. Доминирования гибридов первого поколения

4. Сцепленного с полом наследования

Объяснение: Н.И. Вавилов сформулировал закон гомологических рядов, который звучит следующим образом: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Правильный ответ — 1.

12. Близкородственное скрещивание в селекции животных используют для

2. Увеличения гетерозисных форм

3. Получения полиплоидных форм

4. Отбора наиболее продуктивных животных

Объяснение: в селекции скрещивают, например, курицу и петуха с большой мышечной массой для того, чтобы получилось потомство с мышечной массой тоже. Правильный ответ — 1.

13. Метод отдаленной гибридизации особей селекционеры используют для

1. Повышения плодовитости особей

2. Формирования чистых линий

3. Появления мутантных форм

4. Получения эффекта гетерозиса

Объяснение: метод отдаленной гибридизации используют для получения эффекта гетерозиса, так как при таком эффекте гетерозиготные признаки проявляются намного ярче у потомков, чем у родительских особей (наличие эффекта гетерозиса доказано, но причины до конца не выяснены). Правильный ответ — 4.

14. Какой метод используют ученые для получения комбинативной изменчивости у культурных растений?

Объяснение: комбинативная изменчивость возможна (выбирая из предложенных вариантов) только в случае гибридизации, так как комбинативная изменчивость — изменчивость, возникающая при перекомбинации родительских генов. Причинами могут быть нарушения в : кроссинговере в метафазе мейоза, расхождении хромосом в мейозе, слиянии половых клеток. Правильный ответ — 1.

15. В селекции для преодоления бесплодия отдаленных гибридов используют

3. Гетерозиготные организмы

Объяснение: межвидовой скрещивание полиплоидных организмов возможно, так и преодолевается бесплодие отдаленных гибридов. Правильный ответ — 1.

Задания для самостоятельного решения

1. При близкородственном скрещивании снижается жизнеспособность потомства вследствие

1. Проявления рецессивных мутаций

2. Возникновения доминантных мутаций

3. Увеличения доли гетерозигот

4. Сокращения числа доминантных гомозигот

2. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

3. В основе создания селекционерами чистых линий культурных растений лежит процесс

1. Сокращения доли гомозигот в потомстве

2. Сокращения доли полиплоидов в потомстве

3. Увеличения доли гетерозигот в потомстве

4. Увеличения доли гомозигот в потомстве

4. Получением гибридов на основе соединения хромосом клеток разных организмов занимается

5. Явление гибридной силы, проявляющееся а повышении продуктивности и жизнеспособности организмов, называют

6. Для получения высокого урожая картофеля его следует несколько раз в течение лета окучивать для

1. Ускорения созревания плодов

2. Сокращения численности вредителей

3. Развития придаточных корней и столонов

4. Улучшения питания корней органическими веществами

7. В селекции растений чистые линии получают путем

3. Экспериментального мутагенеза

4. Межвидовой гибридизации

8. Снижение эффекта гетерозиса в последующих поколениях обусловлено

1. Проявлением доминантных мутаций

2. Увеличением числа гетерозиготных особей

3. Увеличением числа гомозиготных особей

4. Появлением полиплоидных форм

9. Получение гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

10. В селекции животных, в отличие от селекции растений и микроорганизмов, проводят отбор

11. Что представляет собой сорт или порода?

1. Искусственную популяцию

12. В селекции животных практически не используют

2. Неродственное скрещивание

3. Родственное скрещивание

13. Полиплоидия применяется в селекции

14. Популяция растений, характеризующаяся сходными генотипом и фенотипом, полученная в результате искусственного отбора, — это

15. Индивидуальный отбор в селекции растений проводится для получения

16. В селекции явление гетерозиса объясняется

1. Кратным увеличением числа хромосом

2. Изменением генофонда сорта или породы

3. Переходом многих генов в гомозиготное состояние

4. Гетерозиготностью гибридов

17. В основе создания новых пород сельскохозяйственных животных лежит

1. Скрещивание и искусственный отбор

2. Влияние природной среды на организмы

3. Содержание их в хороших условиях

4. Соблюдение режима питания и полноценное кормление

18. Каким путем осуществляется в селекции растений выведение новых сортов?

1. Выращиванием растений на удобренных почвах

2. Вегетативным размножением с помощью отводков

3. Скрещиванием растений разных сортов с последующим отбором

4. Выращиванием растений на бедных почвах

19. Для восстановления способности к воспроизведению у гибридов при отдаленной гибридизации необходимо

1. Перевести их в полиплоидные формы

2. Размножить их вегетативно

3. Получить гетерозисные организмы

20. Чистая линия растений — это потомство

2. Одной самоопыляющейся особи

4. Двух гетерозиготных особей

21. Искусственный мутагенез наиболее часто применяется в селекции

22. Полиплоидные формы тутового шелкопряда были получены путем

1. Близкородственного скрещивания

2. Увеличения числа хромосом в генотипе потомства

4. Изменения характера питания потомства

23. Массовый отбор в селекции растений используют для

1. Оценки генотипов потомства

2. Подбора растений по фенотипу

4. Получения эффекта гетерозиса

24. Возможность предсказывать возникновение сходных признаков у родственных видов появилась с открытием закона

1. Промежуточного наследования признаков

2. Расщепления признаков у потомства

3. Гомологических рядов в наследственной изменчивости

4. Сцепленного наследования генов

25. Какой агроприем улучшает снабжение корней культурных растений кислородом?

2. Подкормка минеральными удобрениями

26. Сохранение признаков у гетерозисных гибридов растений возможно только при

2. Вегетативном размножении

3. Отдаленной гибридизации

4. Использовании метода полиплоидии

27. Полиплоидные растения получают в селекции путем

1. Искусственного мутагенеза

2. Вегетативного размножения

3. Скрещивания гетерозиготных растений

28. В соответствии с законом гомологических рядов Н.И. Вавилова сходные ряды наследственной изменчивости могут быть обнаружены у

1. Картофеля и подсолнечника

29. Выращивание тканей вне организма — метод

30. Популяция микроорганизмов, характеризующаяся сходными наследственными особенностями и определенными внешними признаками, полученная в результате искусственного отбора, — это

31. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

32. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

33. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

34. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

35. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

источник

Отдаленная гибридизация — это скрещивание форм, относящихся к разным видам и родам. Такие скрещивания проводят с целью совмещения у гибридов полезных для человека признаков и свойств в тех случаях, когда внутривидовая гибридизация оказывается неэффективной. Например, при гибридизации сортов культурных видов с дикими предками потомство неприхотливо к условиям выращивания и устойчивым к болезням и вредителям.

При отдаленной гибридизации в зиготу объединяются гаметы, которые могут различаться и по генетической конструкции хромосом, и по их числу. Поэтому и в естественных условиях, и в эксперименте возможность отдаленной гибридизации ограничивается рядом факторов: 1) географическая изоляция видов; 2) препятствия к опылению, обусловленные несовпадением циклов размножения, различием в строении половых аппаратов, несовместимостью пыльцевых трубок и тканей пестика; 3) препятствия к оплодотворению, вызванные генетической несовместимостью сливающихся гамет или физиологической несовместимостью ядра и цитоплазмы; 4) нежизнеспособность зиготы, погибающей на ранних стадиях развития; 5) полная или приближающаяся к таковой стерильность гибридов F1.

Читайте также:  Чай радость от бесплодия

Первым исследователем проблемы отдаленной гибридизации был Й. Г. Кёльрёйтер, получивший в 1760 г. первый гибрид от скрещивания махорки и табака. В дальнейшем эту проблему продолжали развивать такие известные гибридизаторы, как О. Сажрэ, Ш. Нодэн, Г. Мендель, И. В. Мичурин, Н. В. Цицин и др. Так, И. В. Мичурин разработал методы преодоления нескрещиваемости форм при отдаленной гибридизации: опыление смесью пыльцы, метод посредника предварительного вегетативного сближения, и получил отдаленные гибриды у плодово-ягодных культур.

Межвидовые и межродовые гибриды, как правило, имеют пониженную плодовитость или совершенно бесплодны. Одной из причин их бесплодия в одних случаях можно считать неправильное развитие генеративных органов. У растений это отражается на пыльниках, которые остаются недоразвитыми и не раскрываются. В других случаях затруднения возникают на более поздних стадиях и выражаются в нарушениях мейоза. Эти нарушения прежде всего состоят в том, что хромосомы разных видов плохо конъюгируют или же конъюгация между ними протекает неправильно. Часто разные виды различаются неодинаковым числом хромосом, что затрудняет нормальную конъюгацию хромосом у гибрида.

Например, Drosophila pseudoobscura и Dr. miranda внешне очень похожи, число хромосом у обоих видов одинаково, их форма и величина тоже совпадают. Однако изучение хромосом слюнных желез показало, что хромосомные комплексы обоих видов сильно различаются. Эти различия вызваны главным образом структурными изменениями хромосом — инверсией и транслокацией. Вследствие нарушения гомологии хромосом у гибридов нарушается их конъюгация во время мейоза, что приводит к невозможности образования нормальных половых клеток.

Нарушения мейоза — часто результат того, что у скрещиваемых видов разное число хромосом. Если вид А имеет 14 хромосом, а вид В — 28, то у гибрида будет 21 хромосома (7 — от вида Ли 14 — от вида В). Таким образом, у 7 хромосом В нет гомологов для конъюгации. Это приведет к беспорядочному распределению хромосом при мейозе и образованию несбалансированных нежизнеспособных гамет. Бесплодие у отдельных гибридов может быть преодолено путем перевода этих форм на полиплоидный уровень. Впервые такая работа была осуществлена Г. Д. Карпеченко (1924 г.), получившим плодовитый гибрид между редькой и капустой (рафанобрассика). Определенных успехов добились ученые в повышении продуктивности амфидиплоидов тритикале и т. д.

Отдаленная гибридизация зерновых, кормовых, технических, плодово-ягодных и других культур проводится в широких масштабах.

источник

2. БЕСПЛОДИЕ ОТДАЛЕННЫХ ГИБРИДОВ, ЕГО ПРИЧИНЫ И СПОСОБЫ ПРЕОДОЛЕНИЯ

Отдаленные гибриды первого поколения, как правило, бывают бесплодными или имеют очень низкую плодовитость. Пониженной плодовитостью характеризуются в некоторых случаях и отдаленные гибриды старших поколений. Чем дальше отстоят друг от друга в систематическом и генетическом отношении скрещиваемые виды и роды, тем более выражено бесплодие гибридов между ними Вегетативные органы у отдаленных гибридов первого поколения обычно хорошо развиты, иногда они даже отличаются повышенной мощностью, а развитие и функционирование генеративных органов сопровождается нарушениями.

На основе цитогенетического изучения поведения хромосом в мейозе различных отдаленных гибридов Г. Д. Карпеченко предложил классифицировать отдаленные скрещивания на две группы: конгруентные (от лат. соngruentis — соответствовать, совпадать) и инконгруентные. Конгруентными он назвал скрещивания близких видов, в которых родительские формы имеют «соответственные» наборы хромосом, способные комбинироваться у гибридов без понижения жизнеспособности и фертильности. В качестве конгруентных можно привести скрещивания двух видов овса: Аvеnа sаtiva (2n = 42) XАvеnа bуzantinа (2п = 42) или двух видов пшеницы: Тгiticum durum (2п = 28) Х Т. dicoccum (2n = 28).

К инконгруентным Г. Д. Карпеченко отнес такие скрещивания, когда родительские формы имеют «несоответственные» наборы хромосом или разное их число, либо когда их различия связаны с цитоплазмой, а также то и другое одновременно. Результатом указанных явлений бывает неправильный мейоз, полная или частичная стерильность, ненормальное развитие гибридов F1 a также большей части гибридов старших поколений. Непосредственные причины бесплодия отдаленных гибридов следующие:

1. Недоразвитие генеративных органов. Чаще всего недоразвитыми бывают пыльники, иногда они совсем не раскрываются. В некоторых случаях не способны функционировать и женские генеративные органы.

2. Нарушения мейоза, приводящие к образованию в различной степени нежизнеспособной пыльцы и аномальных яйцеклеток. Нередко у одного и того же гибрида не раскрываются пыльники и образуется аномальная пыльца.

Рассмотрим основные причины стерильности отдаленных гибридов, связанные с нарушением микро- и макроспорогенеза.

Разное число хромосом у скрещиваемых видов, приводящее к образованию унивалентов. При скрещивании разнохромосомных видов у гибридов F1 нарушается парность хромосом, в результате чего образуются нежизнеспособные гаметы. Рассмотрим этот случай на примере скрещивания пшеницы мягкой (2п = 42) с твердой (2п = 28). В соматических клетках у таких гибридов будет 35 хромосом (21 + 14). При гаметогенезе 14хромосом одного вида конъюгируют с 14 хромосомами другого, образуя 14 бивалентов; 7 хромосом мягкой пшеницы, не находя себе партнеров, остаются одиночными, их называют унивалентными, или унивалентами. В анафазе I мейоза бивалентные хромосомы расходятся в дочерние клетки поровну, в каждую по 14. Унивалентные же 7 хромосом, оказавшись «лишними», будут случайно распределяться между сортами в разных количествах. Таким образом, гаметы могут иметь разное число хромосом: 14, 15, 16, 17, 18, 19, 20 и 21. Большинство из них с излишком или недостатком хромосом по сравнению с числом, свойственным данному виду, оказываются нежизнеспособными. Это и определяет высокую стерильность, свойственную гибридам F1 между пшеницей мягкой и твердой.

При слиянии жизнеспособных гамет с разными числами хромосом образуются гибриды F2, в клетках которых содержится от 28 до 42 хромосом. Чем меньшее у этих гибридов число хромосом отклоняется от данных цифр, т. е. чем меньше выражена у них анеуплоидность, тем они более плодовиты. Наиболее жизнеспособными будут гибриды с числом хромосом 28 и 42, а затем анеуплоиды с 27—29 и 41—43 хромосомами. В последующих поколениях при самоопылении гибридов число анеуплоидных растений будет быстро уменьшаться, а число растений с хромосомными наборами исходных видов возрастать. По внешнему виду 42-хромосомные гибриды окажутся похожими на пшеницу мягкую, а 28-хромосомные — на твердую. Но это сходство не будет полным. В результате рекомбинации целых хромосом и обмена их участками во время конъюгации 42-хромосомные гибриды будут иметь отдельные признаки пшеницы твердой, а 28-хромосомные — мягкой.

3. ОСОБЕННОСТИ ФОРМООБРАЗОВАНИЯ В ПОТОМСТВЕ ОТДАЛЕННЫХ ГИБРИДОВ

Для отдаленных гибридов F1 в целом характерен промежуточный тип наследования. По фенотипу часть гибридов бывает похожа на одну родительскую форму, часть на другую, у некоторых же из них развиваются совершенно новые признаки. При скрещивании культурных видов с дикими, как правило, доминируют признаки диких. Например, у гибридов F1 от скрещивания подсолнечника с топинамбуром проявляется полный иммунитет к заболеваниям, около 96% их оказываются многолетними формами. У пшенично-пырейных гибридов F1 доминируют признаки пырея; многолетний образ жизни, высокая морозостойкость, устойчивость к грибным болезням, длинный рыхлый колос, прочная соломина. При скрещивании культурных видов картофеля с дикими гибриды обычно имеют длинные столоны, мелкие клубни и отличаются очень небольшой продуктивностью. Для их окультуривания проводят до пяти — восьми повторных скрещиваний с культурными сортами. У растений первого поколения межвидовых гибридов проявляется гетерозис.

В F2 и последующих поколениях отдаленных гибридов идет очень широкий, сложный и бурный формообразовательный процесс, Г. К. Мейстер, изучая формообразование пшенично-ржаных гибридов, обнаружил среди них много редких разновидностей и форм, совершенно не встречающихся среди распространенных видов пшеницы.

Особенности формообразовательного процесса при отдаленной гибридизации растений лучше всего изучены Н. В. Цициным и Г. Д. Лапченко в скрещивании пшеницы с пыреем. Гибриды от скрещивания пшеницы мягкой (2п = 42) с пыреем сизым (2п = 42) при повторном опылении пшеницей вF2—Fз и старших поколениях дают большое разнообразие констатных форм. По типу колоса и числу хромосом их условно разделяют на три группы: 1) 42-хромосомные гибриды с пшеничным типом колоса; 2) 56-хромосомные гибриды с промежуточным типом колоса; 3) 42- и 56-хромосомные гибриды с пырейным типом колоса.

42-хромосомные ППГ в хромосомном комплексе имеют лишь отдельные гены пырея. Поэтому они мало отличаются от обычных сортов пшеницы, хотя по таким признакам, как продуктивность, устойчивость к полеганию и некоторым заболеваниям, иногда имеют перед ними преимущества. 56-хромосомные ПППГ с промежуточным типом колоса в отличие от 42-хромосомных ППГ имеют в соматических клетках 14 хромосом пырея и, следовательно, обладают большим числом его признаков.

Скрещивание 56-хромосомных ППГ между собой, а также гибридизация их с пшеницей и ржано-пшеничными амфидиплоидами (РПА) дают огромный спектр изменчивости. Возникают формы, многие из которых не известны ни в культуре, ни в диком виде: 42-хромосом-ные высокопродуктивные пшеничного типа; пшенично-пырейные и пырейно-пшеничные формы, обладающие комплексным иммунитетом ко многим заболеваниям; формы с вертикальным расположением листьев, т. е. признаком, который может резко повысить фотосинтетическую способность будущих сортов; формы, обладающие ЦМС и одновременно открытым типом цветения, сходные по этому признаку с рожью; формы с крупным колосом ржи, но закрытым, как у пшеницы, типом цветения; ветвистоколосые и другие формы вида Т.turgidum и т. д.

источник

В процессе эволюции растений и животных сформировались механизмы, препятствующие скрещиванию между разными видами. В противном случае они не способны были бы сохранить свою индивидуальность — более того, встречались бы невероятные химеры. У животных гибридизации часто препятствуют отсутствие стремления представителей разных видов спариваться друг с другом. Если половой инстинкт не препятствует скрещиванию, оно все же оказывается невозможным из-за полного несоответствия в строении половых органов, исключающего спаривание особей разных видов. Да и циклы размножения у представителей разных видов существенно различны.

Межвидовому скрещиванию цветковых растений мешает географическая изоляция видов, разобщенность их ареалов. Сохранению вида способствует строение цветков и их органов, препятствующее взаимному переопылению растений разных видов. Скрещивание часто не осуществляется из-за неспособности пыльцы одного вида прорастать на рыльце другого. В иных случаях пыльца может прорасти, но пыльцевые трубки растут так медленно, что оплодотворения не происходит. В случаях, когда яйцеклетка все же оплодотворяется и начинается формирование гибридного зародыша, последний гибнет на той или иной стадии эмбрионального развития. Нормальное семя так и не образуется. Гибель зародыша бывает вызвана не какими-то его дефектами, а нарушением связи с материнским растением. Это приводит к прекращению поступления питательных веществ в гибридное семя. Если такой зародыш извлечь из семяпочки и выращивать на искусственной питательной среде, гибрид можно получить.

Несмотря на все эти биологические и экологические препятствия, межвидовая гибридизация все-таки удается, но образовавшиеся гибриды имеют очень низкую плодовитость, а чаще и полное бесплодие.

Исследованием причин бесплодия межвидовых гибридов и разработкой путей его преодоления занимался советский генетик Г. Д. Карпеченко в 1924 г. Он скрещивал редьку с капустой. У этих видов одинаковое число хромосом — 18, они образуют гаметы с девятью хромосомами. У гибридов было 18 хромосом, но они оказались полностью стерильными. Только в редких случаях удавалось получать нормальные семена. При цитологическом анализе исследователь обнаружил, что бесплодие гибридов вызвано неправильным расхождением хромосом во время мейоза. Девять хромосом редьки не встречали гомологов среди девяти хромосом капусты. Образующиеся у гибридов гаметы имели нарушенное количество хромосом — от 0 до 18 — и поэтому были нежизнеспособными. Только в редких случаях и в мужских, и в женских половых клетках встречались хромосомы обоих видов — 9Р + 9К. При слиянии таких гамет у гибридов оказывалось 36 хромосом, объединяющих два полных набора редьки и капусты. У гибрида оказался комбинированный стручок — верхняя часть от редьки, основание типа капусты.

Формирование гамет у гибридов проходит нормально. В мейозе каждая хромосома имеет свою гомологичную. Хромосомы редьки вступают в связь со своими парными, а хромосомы капусты образуют свои пары. Поэтому 36-хромосомные гибриды были плодовиты, не расщеплялись при последующем размножении. Хромосомы редьки и капусты не перекомбинировались, растения были константными.

Эти работы дали возможность решить проблему плодовитости межвидовых гибридов. Удвоение числа хромосом у отдаленных гибридов приводит к преодолению бесплодия. Созданный искусственно аллополиплоид — это новое, не встречающееся в природе растение. Открылся перспективный путь синтеза новых видов. Сейчас общее количество экспериментально полученных аллополиплоидных растений составляет несколько сотен.

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *