Меню Рубрики

В чем причина бесплодия межвидовых грибов

Подробное решение Раздел стр. 141 по биологии для учащихся 9 класса, авторов С.Г. Мамонтов, В.Б. Захаров, И.Б. Агафонова, Н.И. Сонин 2016

  • Гдз рабочая тетрадь по Биологии за 9 класс можно найти тут

Вопрос 1. Что такое вид?

Биологический вид — это совокупность особей, обладающих способностью к скрещиванию с образованием плодовитого потомства; населяющих определенный ареал; обладающих рядом общих морфологических и физиологических признаков и сходством во взаимоотношениях с биотической и абиотической средой.

Вопрос 2. Какие биологические механизмы препятствуют скрещиванию особей разных видов?

Обособленность вида поддерживается репродуктивной изоляцией, которая препятствует его смешению с другими видами при размножении. Изоляция обеспечивается различиями в строении половых органов, разобщенностью ареалов, расхождением в сроках или местах размножения, различиями поведения, экологической разобщенностью и другими механизмами.

Географическая изоляция. Виды, обитающие на большом расстоянии или разделенные непреодолимой преградой, не способны обмениваться генетической информацией.

Сезонная изоляция. Обеспечивается различием сезонов размножение у разных видов. Например, у одного из видов калифорнийской сосны пыльца созревает в феврале, а у другого — в апреле.

Поведенческая изоляция. Характерна для высших животных. Например, у многих близких видов водоплавающих птиц брачное поведение имеет свои характерные особенности, что исключает возможность межвидового скрещивания.

Вопрос 3. В чём причина бесплодия межвидовых гибридов?

Каждый отдельный вид имеет свой собственный кариотип, который отличается числом хромосом, их формой, размерами, строением. Различие кариотипов приводит к нарушению оплодотворения, к смерти зародышей или рождению бесплодного потомства. Стерильность потомства связана с тем, что при отсутствии парных гомологичных хромосом нарушается конъюгация в профазе I мейоза. В результате не образуются биваленты, мейоз нарушается, и развития полноценных гамет у гибридного потомства не происходит.

Вопрос 4. Дайте определение понятия «ареал вида».

Ареал вида — это область распространения вида. Размеры ареалов могут сильно варьировать у разных видов. Например, сосна обыкновенная растет почти по всей территории России, а подснежник характерен только для Северного Кавказа.

Вопрос 5. Что такое радиус индивидуальной активности организмов? Оцените радиус индивидуальной активности некоторых видов животных, типичных для вашего региона.

Радиус индивидуальной активности — это расстояние, на которое может перемещаться организм, исходя из его особенностей жизнедеятельности и физических возможностей.

Активность организмов: 1) у растений — скорость горизонтального роста корневищ и плагиотропных побегов (в год), а также расстояния, на которые рассеиваются теми или иными способам» диаспоры и пыльца; 2) у животных — форма их поведения: продолжительность активной деятельности с учетом расстояний (радиусов активности) передвижения на индивидуальных участках обитания, а также миграции.

Вопрос 6. Что такое популяция? Как вы считаете, может ли ареал популяции совпадать с ареалом вида? Докажите своё мнение.

Популяция — это совокупность особей одного вида, в течение длительного времени населяющих определенную территорию, свободно скрещивающихся между собой и частично либо полностью изолированных от особей других подобных совокупностей.

На территории ареала вида обычно обитает довольно значительное число популяций, каждая из которых является элементарной единицей эволюции.

Вопрос 7. Чем определяются границы ареала обитания видов?

Существует разделение границ на климатические, ландшафтные, биоценотические. Их можно назвать экологическими границами, поскольку они определяются совокупностью факторов. С другой стороны, известно немало случаев, когда граница остается стабильной, и расселения не происходит, несмотря на то, что условия среды внутри ареала и за его пределами однородны и вполне благоприятны для вида.

Биоценотические границы определяются взаимоотношениями разных видов в сообществе.

Границы ареалов часто обусловлены изменением климатических условий, особенно гидротермического режима, долготы дня, мощности снегового покрова и т.д. Сущность климатически обусловленных границ различна; в одних случаях граница расселения вида обусловлена недостатком тепла или сокращением продолжительности теплого периода, в других — решающее значение может иметь суровость зим или уменьшение количества осадков в течение определенной части года.

Границы ареала определяются различными факторами, среди которых важнейшую роль играют климатические, эдафические, биоценотические и антропогенные.

источник

С самых древних времен людей восхищала красота и разнообразие окружающих растений, особенно цветов. Их аромат и нежность во все века были олицетворением любви, чистоты, проявления чувств. Постепенно человек осознал, что может не просто наслаждаться уже имеющимися видами этих прекрасных созданий, но и принимать участие в их формировании. Так началась эпоха селекции растений, приводящая к получению новых видов, обладающих более нужными и важными признаками в гено- и фенотипе. Две науки, совместно работающие над этим вопросом, сумели к настоящему времени добиться просто фантастических результатов — это генетика и ботаника.

Ботаника — это наука, изучающая все, что касается растений. То есть их:

Данная дисциплина охватывает все стороны жизни представителей флоры, начиная с внутренних процессов дыхания, размножения и фотосинтеза и заканчивая внешним разнообразием фенотипических признаков.

Это одна из самых древних наук, которая появилась вместе с развитием человека. Интерес к растущим вокруг него созданиям, так украшающим окружающее пространство, был у человека всегда. К тому же, помимо красоты, это во все времена был еще и мощный источник пропитания, лекарственных компонентов, строительного материала. Поэтому ботаника — это наука, изучающая самые древние, важные, многообразные и сложные организмы на нашей планете — растения.

С течением времени и накоплением теоретических знаний о строении этих существ изнутри, их образе жизни и процессах, в них происходящих, стало доступным и понимание того, как можно манипулировать их ростом и развитием. Набирала обороты наука генетика, которая позволяла на хромосомном уровне изучать разные объекты, скрещивать их между собой, получать плохие и хорошие результаты, выбирать выгодные и нужные. Это стало возможным благодаря следующим открытиям.

  1. Двойное оплодотворение у растений.
  2. Открытие процессов митоза и мейоза.
  3. Разработка методов скрещивания.
  4. Явления гетерозиса, аутбридинга и инцухта.
  5. Расшифровка генетического кода растений.
  6. Биомолекулярные исследования состава клетки и тканей.
  7. Открытия в области цитологии и гистологии.

Конечно, это еще не все предпосылки, которые послужили началом к мощному движению и развитию селекционных методов работы над растениями.

Другое название процесса скрещивания — гибридизация. Метод использования этого явления именуется гибридологическим. Первым его применил для своих опытов Грегор Мендель. Его знаменитые опыты на горохе знает каждый школьник.

Суть всего процесса заключается в скрещивании между собой родительских форм с целью получения гетерозиготного по признакам потомства, которое и будет называться гибридом. При этом типы скрещивания разработаны разные. Они подбираются с учетом индивидуальных особенностей сорта, вида или рода. Всего существует два основных типа подобных процессов.

  1. Аутбридинг, или неродственное скрещивание. Подразумевает, что начальные родительские формы не относятся к одному виду, роду или сорту. То есть не имеют родственных связей. Такое скрещивание одно из самых популярных и чаще всего приводит к гетерозису при выведении чистых линий.
  2. Инбридинг, или инцухт — близкородственная гибридизация особей, относящихся к одному виду или роду, сорту. Этот метод используется для закрепления в популяции какого-либо полезного признака, в том числе и фенотипического. При многократном правильно осуществляемом инцухте возможно получение чистых по генетике линий растений.

Данные типы скрещивания имеют и более узкие разновидности внутри себя. Так, одной из форм аутбридинга считается кроссбридинг — гибридизация между сортами.

Помимо типов, выделяют еще и различные виды скрещивания. Они были подробно описаны и изучены еще Менделем, Томасом Морганом и прочими генетиками прошлых столетий.

Выделяют несколько основных видов гибридизации особей.

  1. Моногибридное, или простое. Подразумевает скрещивание родительских форм с получением первого потомства, проводится однократно.
  2. Дигибридное — за основу берутся родители, различающиеся по двум парам признаков.
  3. Возвратное — гибрид от первого поколения скрещивается с исходной родительской особью.
  4. Полигибридное, или двойное — особи первого поколения далее скрещиваются между собой, а последующие с другими сортами и видами.

Все обозначенные разновидности имеют значение в каждой определенной ситуации. То есть для одних растений достаточно простого скрещивания, чтобы получить желаемый результат. А для других требуется сложная поэтапная полигибридная гибридизация для получения желаемого признака и закрепления его во всей популяции.

В результате любого скрещивания образуется то или иное потомство. Черты, которые оно взяло у родителей, способны проявляться в неодинаковой степени.

Так, признаки гибридов первого поколения фенотипически всегда единообразны, что подтверждается законом Менделя (первым) и его опытами на горохе. Поэтому часто для получения одинакового результата, который требуется всего на раз, применяют именно моногибридный вид гибридизации.

Далее все последующие особи уже комбинируют в себе свойства, поэтому появляется расщепление в определенных соотношениях. Проявляются рецессивы, вмешиваются мутационные процессы. Поэтому самым важным для промышленной деятельности человека, его сельского хозяйства, является именно первое получаемое поколение растений.

Типичный пример: если целью является получение только желтых томатов в результате одного сезонного периода, то скрещивать следует желтый и красный помидор, но при этом красный должен быть получен ранее от желтого родителя. В этом случае первое поколение, безусловно, будет единообразно — желтые плоды томатов.

Межвидовыми называют те гибриды, которые получают в результате аутбридинга или отдаленного скрещивания. То есть это результат спаривания особей, относящихся к разным видам, с целью получения нового с заранее заданными признаками и свойствами.

Таким способом в промышленности людьми были получены многие важные сельскохозяйственные и декоративные растения, а в селекции животных выведены многие новые виды особей.

Примеры межвидовых гибридов среди растений:

  • зернокормовая пшеница;
  • тритикале — пшеница и рожь;
  • ржано-пырейные формы;
  • пшенично-элимусные;
  • несколько видов табака и другие.

Если говорить о животных, то также немало представителей можно привести в пример:

  • лошаки (конь и ослица);
  • лигр — лев и тигрица;
  • межняк — тетерев и глухарь и прочие.

Основная проблема подобных гибридизаций в том, что потомство либо бесплодное, либо нежизнеспособное. Именно поэтому люди создавали и разрабатывали массу способов для устранения этих факторов. Ведь если получается желаемый результат, то очень важно не просто его закрепить, но и ввести в систему получение подобных организмов.

Причины таких проблем кроются в процессах мейоза и митоза, а именно в анафазе, когда хромосомы расходятся к полюсам клетки. В этот момент каждая из них ищет свою гомологичную пару. Так формируются целые хромосомы из хроматид и складывается общий кариотип организма.

А вот у тех особей, у которых слияние происходило от разных родительских форм, возможность встречи подобных структур минимальна или невозможна. Именно поэтому происходит случайное комбинирование признаков и в результате особи становятся бесплодными либо нежизнеспособными. То есть гены, по сути, становятся несовместимыми.

Если обратиться к молекулярному уровню и узнать, в чем причина бесплодия межвидовых гибридов, то ответ будет таким: это несовместимость участков ДНК из ядра клетки и митохондрий. Как результат, отсутствует конъюгация хромосом в мейотическом процессе.

Это и приводит к плачевным результатам как в селекции растений, так и в скрещивании и выведении пород и новых видов животных. Особенно часто такое происходит у представителей флоры. Поэтому получить урожай гибридных растений можно лишь единожды, что крайне неудобно для развития сельского хозяйства.

После того как ученым стало ясно, в чем причина бесплодия межвидовых гибридов, началась активная работа по поиску способа устранения этих причин. Это привело к созданию нескольких способов ликвидации стерильности особей.

Основной путь, который избрали для решения данной проблемы биологи, следующий. На стадии мейоза, когда хромосомы расходятся к полюсам клетки, в нее вводится специальное вещество — колхицин. Он способствует растворению нитей веретена деления (клеточного центра). В результате все хромосомы остаются в одной клетке, а не попадают в разные. Теперь возможна свободная конъюгация между гомологичными парами, а значит, вполне нормальный процесс мейоза в дальнейшем.

Таким образом, потомство становится фертильным и легко плодоносит в дальнейшем при скрещиваниях с разными формами. Чаще всего этот метод используется именно в селекции растений, имеет он название полиплоидии. Впервые был применен нашим ученым Карпеченковым. Так он получил первый фертильный гибрид капусты и редьки.

В чем причина бесплодия межвидовых гибридов, мы уже выяснили. Зная природу проблемы, удалось создать еще два способа ее решения.

  1. Растения опыляют пыльцой только одного из родителей. Такой метод позволяет получать несколько поколений гибридных особей, фертильных. Однако потом признак все равно возвращается, и особи снова становятся стерильными.
  2. Опыление гибридов в первом поколении пыльцой родителей.

На сегодня больше методов борьбы не создано, но работы в этом направлении ведутся.

Символ чистоты и невинности, цветы печали и скорби по ушедшим, нежные и тонкие представители лилейных — лилии. Эти растения ценятся человеком много столетий подряд. За это время каких только сортов не было создано! Естественно, что межвидовые скрещивания коснулись их тоже.

Результатом стало выведение девяти групп гибридных сортов, которые просто поражают красотой фенотипических признаков! Среди них особое место занимают два самых необычных и востребованных представителя:

  • восточные гибриды;
  • лилии ОТ-гибриды.

Рассмотрим признаки обеих групп и дадим им характеристику.

Это самый крупный по формирующемуся цветку гибрид. Биология их практически ничем не отличается от таковой у других представителей. Размеры растущей чашечки могут достигать 31 см в диаметре, а окраска бывает различна. Очень красив сорт Ниппон, имеющий белые крупные цветки с розовой окантовкой. Лепестки у них гофрированные.

Высота данных растений колеблется до 1,2 м. Это позволяет высаживать их на расстоянии 20-25 см друг от друга и формировать красивые цветущие гряды. Все представители этой группы источают очень сильный аромат.

Это и есть лилии ОТ-гибриды, аббревиатура которых образована от полного названия: ориенталь-трубчатые формы. Их еще называют лилейными деревьями за очень высокий размер растений и крупные цветки. На одном стебле высотой до 2,5 метров может сформироваться свыше 25 крупных (до 30 см) цветков, которые являются очень ароматными и яркоокрашенными.

Это позволяет данной группе гибридов быть очень востребованными у садоводов, хотя не каждому дано справиться с их разведением. Требуется очень тщательный уход и правильная высадка, чтобы такие формы могли прижиться и давать потомство.

Гибриды подсолнечника отличаются друг от друга сроками созревания семян. Так, выделяют:

  • скороспелые (до 90 дней);
  • раннеспелые (до 100 дней);
  • среднеспелые (до 110 дней).

Семена гибриды также дают неодинаковые. Масличность и урожайность отлична и зависит от сроков созревания. Чем дольше растение в земле, тем выше качество урожая. Можно назвать несколько самых распространенных в мире гибридов данного растения, наиболее востребованных в сельском хозяйстве.

Среди их основных преимуществ:

  • устойчивость к засухе;
  • заболеваниям и вредителям;
  • урожайность;
  • высокое качество семян;
  • хорошее плодоношение.

источник

5. Вид: критерии и структура

Какие уровни организации живой природы вам известны?

Какие другие систематические категории вам известны?

В основе эволюционной теории Ч. Дарвина лежит представление о виде. Что же такое вид и насколько реально его существование в природе?

Первое представление о виде было создано ещё Аристотелем, который определял вид как совокупность сходных особей. Сам термин «вид» (species) в переводе с латыни означает «образ». Это слово точно определяет тот основной критерий, который использовали исследователи вплоть до XIX в. при определении видовой принадлежности любого организма. Известный учёный К. Линней, создавший учение о виде, считал, что вид состоит из многих схожих особей, дающих плодовитое потомство.

Читайте также:  Хельба отзывы при бесплодии

В современной биологии видом называют совокупность особей, обладающих сходными морфологическими и физиологическими признаками, способных к скрещиванию с образованием плодовитого потомства, населяющих определённый ареал (область обитания), имеющих общее происхождение и сходное поведение.

Биологический вид – это не только основная таксономическая единица в биологической систематике. Это целостная структура живой природы, которая репродуктивно изолирована от других подобных структур и имеет свою собственную судьбу. Целостность этой системе придают, во-первых, процессы взаимодействия между отдельными особями. Взаимоотношения между организмами разных поколений, между родителями и детьми, самцами и самками, особенности территориального поведения – всё это определяет внутреннюю структуру вида. Не всегда видовые признаки обеспечивают выживание отдельной особи, но они всегда благоприятны для вида в целом. Например, пчела, потерявшая жало, погибнет, но при этом защитит остальных особей.

Вторая причина сохранения единства и целостности вида – это репродуктивная изоляция, т. е. невозможность скрещивания с особями другого вида. Так осуществляется защита генофонда вида (всей совокупности генов вида) от притока чужеродной генетической информации. Существуют различные факторы, препятствующие межвидовому скрещиванию. Например, в Калифорнии растут два близких вида сосны. У одного из них пыльца высыпается в начале февраля, а у другого – в апреле, поэтому между этими видами существует сезонная изоляция. У высших животных брачное поведение имеет характерные видовые особенности, поэтому самки одного вида не реагируют на ухаживание самцов другого близкого вида – это пример поведенческой изоляции (рис. 12).

Наличие репродуктивной изоляции в природных условиях является решающим фактором в определении вида как генетически закрытой биологической системы.

Характерные признаки и свойства, которыми одни виды отличаются от других, называют критериями вида.

Критерии вида. Существует несколько основных критериев вида.

Морфологический критерий заключается в сходстве внешнего и внутреннего строения организмов. Долгое время этот критерий был главным, а порой единственным. С его помощью легко определяются особи неблизких видов. Различить кошку и мышь сможет даже маленький ребёнок, мышь и крысу – любой взрослый человек, а вот отличить домовую и малую мышь сможет только специалист. Существуют специальные определители, которые основаны на морфологических особенностях организации. Однако внутри вида всегда существует структурная изменчивость между разными особями, поэтому порой бывает достаточно сложно определить вид конкретной особи.

Генетический критерий. Иногда среди очень похожих особей обнаруживаются группы, которые не скрещиваются друг с другом. Это так называемые виды-двойники, которые встречаются практически во всех крупных систематических группах и отличаются друг от друга числом хромосом. Например, среди насекомых существуют два широко распространённых вида наездников, которые до последнего времени рассматривались как единый вид (рис. 13).

Рис. 12. Разные типы брачного поведения двух близких видов чаек

Рис. 13. Виды-двойники. Насекомые наездники (А, Б), имеющие разные кариотипы (В): 2n = 10 и 2n = 14

Каждый вид имеет определённый набор хромосом – кариотип, который отличается числом хромосом, их формой, размерами, строением. Различное число хромосом в кариотипе разных видов и видовые отличия геномов обеспечивают генетическую изоляцию при межвидовом скрещивании, потому что вызывают гибель гамет, зигот, эмбрионов или приводят к рождению бесплодного потомства (лошак – гибрид коня и ослицы). Именно использование генетического критерия позволяет надёжно различать виды-двойники.

Физиологический критерий отражает сходство всех процессов жизнедеятельности у особей одного вида: одинаковые способы питания, размножения, сходные реакции на внешние раздражители, одинаковые биологические ритмы (периоды спячки или миграции). Например, у двух близких видов плодовой мушки-дрозофилы половая активность наблюдается в разное время суток: у одного вида – по утрам, у другого – в вечерние часы.

Биохимический критерий определяется сходством или различием строения белков, химического состава клеток и тканей. Например, отдельные виды низших грибов отличаются друг от друга способностью синтезировать разные биологически активные вещества.

Экологический критерий характеризуется определёнными формами взаимоотношений организмов данного вида с представителями других видов и факторами неживой природы, т. е. теми условиями, в которых этот вид встречается в природе. В Техасе близкие виды дуба растут на разных почвах: один вид встречается только на известняковой почве, другой – на песчаной, а третий растёт на выходах магматических пород.

Географический критерий определяет область распространения, т. е. ареал, вида. У разных видов размер ареалов сильно отличается. Виды, занимающие обширные площади и встречающиеся повсеместно, называют космополитами, а обитающие на небольших территориях и не встречающиеся в других местах, – эндемиками.

Таким образом, для определения видовой принадлежности организма необходимо использовать все критерии в совокупности, потому что отдельные критерии у разных видов могут совпадать.

Структура вида. Реально в природе особи любого вида внутри ареала распределены неравномерно: где-то они образуют скопления, а где-то могут вообще отсутствовать. Такие частично или полностью изолированные группировки особей одного вида называют популяциями (от лат. populus – народ, население), т. е. в естественных условиях любой вид состоит из совокупности популяций.

Популяция – это совокупность особей одного вида, в течение достаточно длительного времени (большого числа поколений) населяющих определённую территорию внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от особей других подобных совокупностей.

Именно популяция является элементарной единицей эволюции.

Вопросы для повторения и задания

1. Дайте определение понятия «вид».

2. Расскажите, какие биологические механизмы препятствуют обмену генами между видами.

3. В чём причина бесплодия межвидовых гибридов? Объясните это явление, используя свои знания о механизме мейоза.

4. Какие критерии используют учёные для характеристики вида? Какие критерии вы считаете наиболее важными при определении вида?

6. Охарактеризуйте по основным критериям вид Кошка домашняя.

7. Дайте определение понятия «популяция».

Подумайте! Выполните!

1. Почему один вид от другого можно отличить только по совокупности разнообразных критериев? Какие критерии вам кажутся наиболее важными?

2. Известны ли вам примеры, когда формулировка «вид как генетически закрытая система» оказывалась не верна? (Вспомните материал о селекции из курса 10 класса.)

3. Проведите исследование. Выясните, какие виды, обитающие в вашей местности, являются эндемиками, а какие – космополитами. Подготовьте отчёт о проделанной работе в виде стенда.

4. Как вы считаете, можно ли слова «популяция» и «популярный» считать однокоренными? Объясните свою точку зрения.

5. Приведите доказательства, свидетельствующие о том, что виды объективно существуют в природе.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

источник

Вопрос 1. Дайте определение вида.
Вид — совокупность особей, сходных по структурно-функциональной организации (биохимический, цитологический, гистологический, анатомический и физиологический критерии), имеющих единое происхождение (эволюционный критерий), одинаковый кариотип (цитогенетический критерий), сходное поведение (этологический критерий), свободно скрещивающихся между собой (репродуктивный критерий) и дающих плодовитое потомство, занимающих определенный ареал обитания (географический критерий) и характеризующихся определенными отношениями с другими организмами и факторами окружающей среды (экологический критерий).

Вопрос 2. Расскажите, какие биологические механизмы препятствуют обмену генами между видами.
Одна из важных характеристик вида — его репродуктивная изоляция, т.е. наличие механизмов, препятствующих скрещиванию с особями других видов и вследствие этого предотвращающих поток генов извне, защищенность генофонда от притока генов из других, в том числе близкородственных видов, достигается разными путями.
Можно выделить следующие механизмы, препятствующие обмену генами между видами:
1) различие в сроках размножения у представителей разных видов;
2) различие в местах, предпочитаемых для размножения;
3) несоответствие стандартов видового сексуального поведения;
4) несоответствие ферментов акросомы (передней части головки сперматозоида) химическому строению мембраны яйцеклетки;
5) несоответствие в строении половых органов у представителей различных видов;
6) нежизнеспособность или стерильность межвидовых гибридов.
Следовательно, вид — реально существующая, генетически неделимая единица органического мира.

Вопрос 3. В чем причина бесплодности межвидовых гибридов?
Сроки размножения у близких видов могут не совпадать. Если сроки одни и те же, то не совпадают предпочитаемые места размножения. Например, самки одного вида лягушек мечут икру по берегам рек, другого вида — в лужи. Случайное осеменение икры самцом другого вида исключается. У многих видов животных существует строгий ритуал поведения при спаривании. Если у одного из потенциальных партнеров для скрещивания ритуал поведения отклоняется от видового, спаривания не происходит. Если все же спаривание произойдет, сперматозоиды самца другого вида не смогут проникнуть в яйцеклетку и яйца не оплодотворятся. Но иногда при межвидовом скрещивании оплодотворение происходит. В этом случае образовавшиеся гибриды либо отличаются пониженной жизнеспособностью, либо оказываются бесплодными и не дают потомства. Известный пример — мул — гибрид лошади и осла. Будучи вполне жизнеспособным, мул бесплоден из-за нарушений в мейозе: не гомологичные хромосомы не коньюгируют, и не формируются биваленты. Хромосомы не расходятся в разные клетки. В результате половые клетки не образуются, и организм не может оставить потомство. Перечисленные механизмы, предотвращающие обмен генами между видами, имеют неодинаковую эффективность, но в комплексе в природных условиях они создают практически непроницаемую генетическую изоляцию между видами.

Вопрос 4. Что такое ареал вида?
Ареал — область распространения на суше или в различных водоемах систематической группы живых организмов. Ареал является первичным, если в нем произошло эволюционное становление вида. Сформировавшийся ареал может в дальнейшем расширяться вследствие расселения особей данного вида или сужаться в результате вымирания части организмов. Для эндемичных видов ареалы, как правило, сплошные, и организмы более или менее равномерно расселены по всей местности. В других случаях ареалы становятся прерывистыми в результате наличия на обширных пространствах географических, экологических или биологических преград. Такие же ареалы характерны для широко распространенных видов.

Вопрос 5. Что такое радиус индивидуальной активности организмов? Приведите примеры радиуса индивидуальной активности для растений и животных.
Радиус индивидуальной активности — расстояние, на которое может перемещаться организм, исходя из его особенностей жизнедеятельности и физических возможностей. У растений этот радиус определяется расстоянием, на которое распространяется пыльца, семена или вегетативные части, способные дать начало новому растению. Для виноградной улитки радиус активности составляет несколько десятков метров, для северного оленя — более ста километров, для ондатры — несколько сот метров, первобытного человека — 15—25 км, дуба — 100 м, клубники — 1—1,5м. Вследствие ограниченности радиусов активности лесные полевки, обитающие в одном лесу, имеют немного шансов встретиться в период размножения с лесными полевками, населяющими соседний лес. Травяные лягушки, мечущие икру в одном озере, изолированы от лягушек другого озера, расположенного в нескольких километрах от первого озера. В обоих случаях изоляция неполная, поскольку отдельные полевки и лягушки могут мигрировать из одного местообитания в другое.
Вопрос 6. Что такое популяция? Дайте определение.
Популяция — это совокупность особей данного вида, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций.
Реально вид существует в виде популяций. Популяция является элементарной единицей эволюции.

источник

В процессе эволюции растений и животных сформировались механизмы, препятствующие скрещиванию между разными видами. В противном случае они не способны были бы сохранить свою индивидуальность — более того, встречались бы невероятные химеры. У животных гибридизации часто препятствуют отсутствие стремления представителей разных видов спариваться друг с другом. Если половой инстинкт не препятствует скрещиванию, оно все же оказывается невозможным из-за полного несоответствия в строении половых органов, исключающего спаривание особей разных видов. Да и циклы размножения у представителей разных видов существенно различны.

Межвидовому скрещиванию цветковых растений мешает географическая изоляция видов, разобщенность их ареалов. Сохранению вида способствует строение цветков и их органов, препятствующее взаимному переопылению растений разных видов. Скрещивание часто не осуществляется из-за неспособности пыльцы одного вида прорастать на рыльце другого. В иных случаях пыльца может прорасти, но пыльцевые трубки растут так медленно, что оплодотворения не происходит. В случаях, когда яйцеклетка все же оплодотворяется и начинается формирование гибридного зародыша, последний гибнет на той или иной стадии эмбрионального развития. Нормальное семя так и не образуется. Гибель зародыша бывает вызвана не какими-то его дефектами, а нарушением связи с материнским растением. Это приводит к прекращению поступления питательных веществ в гибридное семя. Если такой зародыш извлечь из семяпочки и выращивать на искусственной питательной среде, гибрид можно получить.

Несмотря на все эти биологические и экологические препятствия, межвидовая гибридизация все-таки удается, но образовавшиеся гибриды имеют очень низкую плодовитость, а чаще и полное бесплодие.

Исследованием причин бесплодия межвидовых гибридов и разработкой путей его преодоления занимался советский генетик Г. Д. Карпеченко в 1924 г. Он скрещивал редьку с капустой. У этих видов одинаковое число хромосом — 18, они образуют гаметы с девятью хромосомами. У гибридов было 18 хромосом, но они оказались полностью стерильными. Только в редких случаях удавалось получать нормальные семена. При цитологическом анализе исследователь обнаружил, что бесплодие гибридов вызвано неправильным расхождением хромосом во время мейоза. Девять хромосом редьки не встречали гомологов среди девяти хромосом капусты. Образующиеся у гибридов гаметы имели нарушенное количество хромосом — от 0 до 18 — и поэтому были нежизнеспособными. Только в редких случаях и в мужских, и в женских половых клетках встречались хромосомы обоих видов — 9Р + 9К. При слиянии таких гамет у гибридов оказывалось 36 хромосом, объединяющих два полных набора редьки и капусты. У гибрида оказался комбинированный стручок — верхняя часть от редьки, основание типа капусты.

Формирование гамет у гибридов проходит нормально. В мейозе каждая хромосома имеет свою гомологичную. Хромосомы редьки вступают в связь со своими парными, а хромосомы капусты образуют свои пары. Поэтому 36-хромосомные гибриды были плодовиты, не расщеплялись при последующем размножении. Хромосомы редьки и капусты не перекомбинировались, растения были константными.

Эти работы дали возможность решить проблему плодовитости межвидовых гибридов. Удвоение числа хромосом у отдаленных гибридов приводит к преодолению бесплодия. Созданный искусственно аллополиплоид — это новое, не встречающееся в природе растение. Открылся перспективный путь синтеза новых видов. Сейчас общее количество экспериментально полученных аллополиплоидных растений составляет несколько сотен.

источник

1. Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путем

3. Искусственного мутагенеза

4. Внутривидовой гибридизации

Объяснение: в грибы, как и в бактерии встраивают гены выработки антибиотиков, вследствие чего они вырабатываю антибиотики в большом количестве. Правильный ответ — 3.

2. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

Объяснение: клеточная инженерия (а не генная) занимается пересадкой ядер. Правильный ответ — 1.

3. Гибриды, полученные путем отдаленной гибридизации, бесплодны, так как у них

1. Невозможен процесс конъюгации в мейозе

2. Нарушается процесс митотического деления

3. Проявляются рецессивные мутации

4. Доминируют летальные мутации

Объяснение: при скрещивании неблизкородственных гибридов не бывает таких проблем, как при скрещивании близкородственный особей, поэтому их потомство не появляется, так как конъюгации в мейозе не происходит. Правильный ответ – 1.

Читайте также:  Диагностика бесплодия один день

4. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

Объяснение: речь идет о получении полиплоидных организмов, то есть с увеличенным набором хромосом. Такой набор можно получить только при помощи искусственного мутагенеза. Правильный ответ — 4.

5. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

Объяснение: отдаленная гибридизация возможна только при получении полиплоидов. Правильный ответ – 2.

6. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

Объяснение: полиплоиды — организмы с кратно увеличенным набором хромосом: 4n, 6n, 8n и т.д. Правильный ответ — 1.

7. Индивидуальный отбор в селекции, в отличие от массового, более эффективен, так как он проводится

2. Под влиянием факторов окружающей среды

3. Под влиянием деятельности человека

Объяснение: массовый отбор идет по фенотипу (отбираем особей с нужным нам хорошо выраженным признаком), а индивидуальный — по генотипу (то есть идет среди особей с известным генотипом). Правильный ответ — 1.

8. Для преодоления бесплодия межвидовых гибридов Г.Д. Карпеченко предложил метод

2. Экспериментального мутагенеза

3. Отдаленной гибридизации

4. Близкородственного скрещивания

Объяснение: полиплоидия – это кратное увеличение набора хромосом, позволяющее особям разных видов давать потомство, что создается искусственно (но существуют и природные полиплоиды, они, как правило, больше и сильнее своих сородичей). Правильный ответ – 1.

9. Явление гибридной силы, проявляющееся в повышении продуктивности и жизнеспособности организмов, называют

Объяснение: гетерозис — явление при котором при межвидовом скрещивании получаются гетерозиготные организмы. У этих организмов очень сильно проявлены гетерозиготные признаки. То есть в данном случае гетерозигота проявляется сильнее, чем гомозигота по доминантному признаку. Например, они могут быть более продуктивны и жизнеспособны. Правильный ответ — 3.

10. В селекции животных применяют метод

3. Самооплодотворения особей

4. Оценки родительских особей по потомству

Объяснение: целью селекции является выведение нового сорта или породы с полезными для человека признаками и с из большим проявлением. Такое выведение занимает много времени, так как конечной целью является получение чистой линии особей с наибольшим проявлением признака, но в начале этого пути, при скрещивании родительских особей селекционеры не могут узнать какие признаки содержатся у родителей, они могут узнать это только при выведении потомства, а может быть и даже нескольких поколений потомства данных родителей. Правильный ответ — 4.

11. Н.И. Вавилов, занимаясь исследованием особенностей наследования признаков культурных растений, обосновал закон

1. Гомологических рядов в наследственной изменчивости

2. Независимого наследования неаллельных генов

3. Доминирования гибридов первого поколения

4. Сцепленного с полом наследования

Объяснение: Н.И. Вавилов сформулировал закон гомологических рядов, который звучит следующим образом: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Правильный ответ — 1.

12. Близкородственное скрещивание в селекции животных используют для

2. Увеличения гетерозисных форм

3. Получения полиплоидных форм

4. Отбора наиболее продуктивных животных

Объяснение: в селекции скрещивают, например, курицу и петуха с большой мышечной массой для того, чтобы получилось потомство с мышечной массой тоже. Правильный ответ — 1.

13. Метод отдаленной гибридизации особей селекционеры используют для

1. Повышения плодовитости особей

2. Формирования чистых линий

3. Появления мутантных форм

4. Получения эффекта гетерозиса

Объяснение: метод отдаленной гибридизации используют для получения эффекта гетерозиса, так как при таком эффекте гетерозиготные признаки проявляются намного ярче у потомков, чем у родительских особей (наличие эффекта гетерозиса доказано, но причины до конца не выяснены). Правильный ответ — 4.

14. Какой метод используют ученые для получения комбинативной изменчивости у культурных растений?

Объяснение: комбинативная изменчивость возможна (выбирая из предложенных вариантов) только в случае гибридизации, так как комбинативная изменчивость — изменчивость, возникающая при перекомбинации родительских генов. Причинами могут быть нарушения в : кроссинговере в метафазе мейоза, расхождении хромосом в мейозе, слиянии половых клеток. Правильный ответ — 1.

15. В селекции для преодоления бесплодия отдаленных гибридов используют

3. Гетерозиготные организмы

Объяснение: межвидовой скрещивание полиплоидных организмов возможно, так и преодолевается бесплодие отдаленных гибридов. Правильный ответ — 1.

Задания для самостоятельного решения

1. При близкородственном скрещивании снижается жизнеспособность потомства вследствие

1. Проявления рецессивных мутаций

2. Возникновения доминантных мутаций

3. Увеличения доли гетерозигот

4. Сокращения числа доминантных гомозигот

2. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

3. В основе создания селекционерами чистых линий культурных растений лежит процесс

1. Сокращения доли гомозигот в потомстве

2. Сокращения доли полиплоидов в потомстве

3. Увеличения доли гетерозигот в потомстве

4. Увеличения доли гомозигот в потомстве

4. Получением гибридов на основе соединения хромосом клеток разных организмов занимается

5. Явление гибридной силы, проявляющееся а повышении продуктивности и жизнеспособности организмов, называют

6. Для получения высокого урожая картофеля его следует несколько раз в течение лета окучивать для

1. Ускорения созревания плодов

2. Сокращения численности вредителей

3. Развития придаточных корней и столонов

4. Улучшения питания корней органическими веществами

7. В селекции растений чистые линии получают путем

3. Экспериментального мутагенеза

4. Межвидовой гибридизации

8. Снижение эффекта гетерозиса в последующих поколениях обусловлено

1. Проявлением доминантных мутаций

2. Увеличением числа гетерозиготных особей

3. Увеличением числа гомозиготных особей

4. Появлением полиплоидных форм

9. Получение гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

10. В селекции животных, в отличие от селекции растений и микроорганизмов, проводят отбор

11. Что представляет собой сорт или порода?

1. Искусственную популяцию

12. В селекции животных практически не используют

2. Неродственное скрещивание

3. Родственное скрещивание

13. Полиплоидия применяется в селекции

14. Популяция растений, характеризующаяся сходными генотипом и фенотипом, полученная в результате искусственного отбора, — это

15. Индивидуальный отбор в селекции растений проводится для получения

16. В селекции явление гетерозиса объясняется

1. Кратным увеличением числа хромосом

2. Изменением генофонда сорта или породы

3. Переходом многих генов в гомозиготное состояние

4. Гетерозиготностью гибридов

17. В основе создания новых пород сельскохозяйственных животных лежит

1. Скрещивание и искусственный отбор

2. Влияние природной среды на организмы

3. Содержание их в хороших условиях

4. Соблюдение режима питания и полноценное кормление

18. Каким путем осуществляется в селекции растений выведение новых сортов?

1. Выращиванием растений на удобренных почвах

2. Вегетативным размножением с помощью отводков

3. Скрещиванием растений разных сортов с последующим отбором

4. Выращиванием растений на бедных почвах

19. Для восстановления способности к воспроизведению у гибридов при отдаленной гибридизации необходимо

1. Перевести их в полиплоидные формы

2. Размножить их вегетативно

3. Получить гетерозисные организмы

20. Чистая линия растений — это потомство

2. Одной самоопыляющейся особи

4. Двух гетерозиготных особей

21. Искусственный мутагенез наиболее часто применяется в селекции

22. Полиплоидные формы тутового шелкопряда были получены путем

1. Близкородственного скрещивания

2. Увеличения числа хромосом в генотипе потомства

4. Изменения характера питания потомства

23. Массовый отбор в селекции растений используют для

1. Оценки генотипов потомства

2. Подбора растений по фенотипу

4. Получения эффекта гетерозиса

24. Возможность предсказывать возникновение сходных признаков у родственных видов появилась с открытием закона

1. Промежуточного наследования признаков

2. Расщепления признаков у потомства

3. Гомологических рядов в наследственной изменчивости

4. Сцепленного наследования генов

25. Какой агроприем улучшает снабжение корней культурных растений кислородом?

2. Подкормка минеральными удобрениями

26. Сохранение признаков у гетерозисных гибридов растений возможно только при

2. Вегетативном размножении

3. Отдаленной гибридизации

4. Использовании метода полиплоидии

27. Полиплоидные растения получают в селекции путем

1. Искусственного мутагенеза

2. Вегетативного размножения

3. Скрещивания гетерозиготных растений

28. В соответствии с законом гомологических рядов Н.И. Вавилова сходные ряды наследственной изменчивости могут быть обнаружены у

1. Картофеля и подсолнечника

29. Выращивание тканей вне организма — метод

30. Популяция микроорганизмов, характеризующаяся сходными наследственными особенностями и определенными внешними признаками, полученная в результате искусственного отбора, — это

31. В клеточной инженерии проводят исследования, связанные с

1. Пересадкой ядер из одних клеток в другие

2. Введением генов человека в клетки бактерий

3. Перестройкой генотипа организма

4. Пересадкой генов от бактерий в клетки злаковых

32. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем

2. Близкородственного скрещивания

4. Искусственного мутагенеза

33. Что позволяет преодолеть бесплодие потомков, полученных путем отдаленной гибридизации растений?

1. Образование гаплоидных спор

3. Анализирующее скрещивание

34. В селекции для получения новых полиплоидных сортов растений

1. Кратно увеличивают набор хромосом в клетках

2. Скрещивают чистые линии

3. Скрещивают родителей и потомков

4. Уменьшают набор хромосом в клетках

35. Эффект гетерозиса проявляется вследствие

1. Увеличения доли гомозигот

2. Появления полиплоидных особей

3. Увеличения числа мутаций в соматических клетках

4. Перехода рецессивных мутаций в гетерозиготное состояние

источник

Можно принять за правило, что чем дальше отстоят друг от друга скрещиваемые виды и роды, тем сильнее выражена стерильность их гибридов.

Среди отдаленных скрещиваний различают две группы: 1) конгруентные скрещивания, когда родительские формы, несмотря на различие в генах, могут скрещиваться без понижения жизнеспособности, и 2) инконгруентные скрещивания, когда родительские формы имеют несоответственные хромосомы или разное число хромосом или несоответствие в плазме; у гибридов от таких скрещиваний обычно наблюдается неправильный мейоз или ненормальность в развитии и они оказываются стерильными.

Факторы, вызывающие стерильность, весьма различны:

1) несовместимость ядра и цитоплазмы и как следствие этого — нарушение митозов в процессе развития генеративных тканей;

2) действие генов, препятствующих развитию гонад и эндокринных желез у животных, а у растений — женских и мужских органов цветка;

3) генетические факторы, препятствующие конъюгации хромосом в мейозе и образованию бивалентов, следствием чего является образование гамет с несбалансированным набором хромосом.

Все эти причины обусловлены генетически, и поэтому в каждом отдельном скрещивании есть возможность установить главный фактор, определяющий бесплодие.

Атипические митозы в гибридном организме, как мы видели, могут начинаться очень рано и приводить к полной депрессии развития. Однако атипичность митозов может быть частичной и не исключает дальнейшего, даже нормального, развития гибридного организма. Атипические митозы могут проявляться в отдельных тканях, образуя химерные ткани, в том числе и в генеративной при закладке гонад, а также в процессе размножения сперматогоний и оогоний. В этом случае будет наблюдаться частичная стерильность.

У гибридов часто возникают реципрокные различия в плодовитости. Так, у некоторых гибридов семейства Bovidae межвидовые скрещивания яка и бизона с крупным рогатым скотом дают стерильных гибридных самцов и плодовитых самок. При беккроссах, по мере повышения кровности, гаметогенез восстанавливается и у мужского пола. Например, сперматогенез у гибридов первого поколения 1/2 кровного яка прекращается на стадии сперматогоний, а у 1/4 кровного яка прекращается на стадии сперматоцитов. Та же самая картина наблюдается у мула и зеброида.

Однако для полного восстановления плодовитости гибридов требуется полное замещение хромосом одного из исходных видов. Гибриды лошади и осла бесплодны в обоих полах. Сперматогенез мулов останавливается на втором делении созревания. Мулицы же иногда дают потомство как от жеребца, так и от осла. При этом беккросс на жеребца дает плодовитых гибридов, похожих на лошадь, а от скрещивания мулиц с ослом рождаются стерильные гибриды, похожие на мула. Эти факты позволяют сделать предположение, что мулицы плодовиты лишь в тех случаях, когда в оогенезе в некоторых яйцеклетках все хромосомы осла выпадают, элиминируются или попадают в направительное тельце, вследствие чего остаются лишь хромосомы лошади.

У растений отдаленная гибридизация также вызывает сходный эффект. По данным В. А. Хижняка, полноценные яйцеклетки у гибрида встречаются чаще, чем фертильная пыльца. У большинства пшенично-пырейных гибридов первого поколения в цветках пыльники не раскрываются и не содержат пыльцы.

Плодовитость отдаленных гибридов первого поколения часто зависит от выбора линий для скрещивания. Так, например, плодовитость гибридов F1 значительно выше от скрещивания Triticum durum X Agropyrom intermedium, чем от скрещивания Tr. Timopheevi X Agr. intermedium. Поскольку в обоих случаях у гибридов число хромосом одинаково (n = 21) и они различаются по плодовитости, то очевидно, что разница в плодовитости объясняется различиями геномов скрещиваемых форм.

Роды, виды и разновидности являются генетически полиморфными в отношении скрещиваемости и плодовитости гибридов.

Главной причиной, определяющей бесплодие отдаленных гибридов, является нарушение мейоза в гаметогенезе. Нарушение мейоза может быть вызвано рядом генетических факторов.

1. Различие в геномах, что ведет к нарушению равного распределения хромосом в метафазе I.

2. При общем сходстве геномов и равенстве числа хромосом скрещиваемых видов имеются различия в отдельных аллелях, а также асинаптические гены, препятствующие нормальному спариванию хромосом. Нарушение мейоза может быть вызвано не только генетическими причинами, но и неблагоприятными факторами внешней и внутренней среды. У животных особое значение приобретают гормональные факторы.

Все указанные выше причины стерильности гибридов так или иначе вызывают нарушение нормального синапсиса хромосом, что препятствует образованию бивалентов. Если биваленты не образуются, то редукционное деление нарушается, так как униваленты распределяются случайно и неравномерно. Следствием неравномерного распределения хромосом относительно полюсов в метафазе появляется образование частично или полностью неполноценных гамет. В том случае, когда один из скрещиваемых видов является автополиплоидом, а другой — диплоидом, в мейозе у гибрида могут возникать не только униваленты, но и триваленты. В случае скрещивания автополиплоидных видов могут образовываться мультиваленты, что также ведет к образованию несбалансированных

Рассмотрим нарушение нормального хода мейоза у аллополипплоидных гибридов. Каждый вид растений, произошедший путем автополиплоидии, обязательно несет несколько разных геномов, в отличие от автополиплоида, который несет сходные геномы. Чем меньше Реология геномов у скрещиваемых видов, тем ниже плодовитость гибридов. Степень плодовитости гибрида указывает на степень гомологичности геномов. Разные геномы, сочетаясь в гибридных клетках, ведут себя в мейозе по-разному. Гомологичные хромосомы сходных геномов, образуя биваленты, нормально расходятся к полюсам в анафазе I. Хромосомы разных геномов, не имеющие гомологов, не образуют бивалентов и распределяются неравномерно. Лишь иногда, когда все хромосомы отходят к одному полюсу, возможно образование нормальных гамет.

Читайте также:  Герпесвирусные инфекции и бесплодие

Хромосомы разных геномов имеют, как правило, морфологические отличия; часто они отличаются циклом спирализации, что проявляется в их неодновременном вступлении в метафазу.

Поскольку образование бивалентов является следствием синапсиса гомологичных хромосом, то в изучении причин бесплодия гибридов имеет значение также учет типа синапсиса отдельных хромосом и числа образующихся хиазм. По числу бивалентов, унивалентов и мультивалентов, а также по типу синапсиса (плотный и рыхлый), числу хиазм бивалентов в мейозе судят о гомологии геномов и хромосом в наборе гибридного организма.

В полиплоидном ряду рода пшениц (Triticum) диплоидная пшеница-однозернянка Tr. monococcum имеет один геном (n = 7), обычно обозначаемый А; тетраплоидные пшеницы (n = 14), например твердая пшеница (Tr. durum), имеют два разных генома А + В; гексаплоидные, например, мягкие пшеницы — три разных генома А + В + D. Таким образом, однозернянка оказывается диплоиден (АА = 2n = 14), твердая пшеница — аллотетраплоидом (АА + ВВ = 2n = 14 + 14); мягкая пшеница — аллогексаплоидом (АА + BB + DD = 2n = 14 + 14 + 14). Хромосомы генома А в мейозе, как правило, не конъюгируют с хромосомами геномов В и D.

Существует еще один вид аллотетраплоидной пшеницы Tr. Timopheevi, открытый П. М. Жуковским в 1929 г., который имел так же, как и твердая пшеница, 2n = 28 хромосом. Скрещивание этой пшеницы с твердой пшеницей осуществляется с трудом, у гибридов сильно нарушен мейоз. В случае сходства геномов в мейозе должно было бы образовываться 14 бивалентов, но фактически наблюдается 7 бивалентов и 14 унивалентов.

Мейоз гибрида F, Triticum durum и Тг. Timopheevi

7 хромосом у каждого из этих видов относятся к одному геному (АА), а 14 хромосом — к разным геномам. В случае скрещиваний Tr. Timopheevi (2n = 28) с однозернянкой, имеющей геном А (n = 7), в мейозе у гибрида обнаруживается менее 7 бивалентов и более 7 унивалентов. Следовательно, у Tr. Timopheevi есть геном А, сходный с таковым у однозернянки. Этот же геном выявится по числу бивалентов и у твердой 28-хромосомной пшеницы, которой геном Tr. Timopheevi, негомологичный также геному В твердой пшеницы, был обозначен G. Следовательно, у Tr. Timopheevi есть два генома АА + GG. Как было установлено, род пшениц имеет 4 разных генома: А, В, D, G.

При скрещивании видов и цитологическом анализе степени конъюгации хромосом и образования бивалентов и унивалентов в мейозе удается выяснить гомологичность геномов и причины стерильности гибридов, вызванные несовместимостью геномов. Такой цитогенетический анализ геномного состава, по предложению Г. Кихары, с 1924 г. стали называть геномным анализом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

источник

Грибы обладают множеством необычных свойств, что затрудняет применение к ним таких понятий, как «индивид», «популяция», «вид». Способы размножения (в том числе полового) и обмена генетическим материалом у грибов намного более разнообразны, чем у животных и высших растений. Этим определяется и разнообразие способов видообразования, которое у грибов происходит очень быстро – буквально на наших глазах.

По имеющимся оценкам, грибы превосходят по числу видов все растительноподобные организмы, вместе взятые, причем на сегодняшний день описано лишь 5% расчетного числа грибных видов. Грибы играют огромную роль в биосфере. Они являются главными переработчиками отмершей древесины, они обеспечивают растения питательными веществами – 90% видов высших растений образуют с грибами симбиотические микоризные ассоциации. Не менее 2/3 углерода, связываемого растениями в ходе фотосинтеза, проходит через тело грибов. Паразитические грибы могут наносить огромный урон растениям, в том числе сельскохозяйственным; они могут вызывать тяжелые заболевания и у животных, включая человека.

Способы размножения (в том числе полового) и жизненные циклы у грибов настолько разнообразны и необычны, что даже самые основополагающие биологические понятия, разработанные на животных и растениях – такие как «индивид» (особь), «популяция», «вид» – порой бывает довольно трудно приложить к грибам. Способы видообразования у грибов, по-видимому, тоже могут быть весьма своеобразными. По мнению Ю. Т. Дьякова, низшие эукариоты были своеобразным эволюционным «полигоном», на котором природа опробовала множество разнообразных механизмов, определяющих структуру и эволюцию популяций. Лишь немногие отобранные «стандарты» легли затем в основу развития животных и высших растений; у грибов же сохранилось множество иных, порой весьма причудливых генетических механизмов размножения, обмена генами и видообразования.

Даже такое, казалось бы, простое понятие, как «особь» или «индивид», порой весьма трудно применить к грибам. Тело большинства грибов представляет собой мицелий – переплетение нитей-гиф, на котором формируются органы полового и бесполого размножения. Где в переплетении гиф, пронизывающем, например, почву, кончается одна «особь» и начинается другая – понять не так-то просто. Это научились делать только в отношении высших базидиальных грибов (тех самых, чьи плодовые тела так хорошо знакомы грибникам), но и здесь процедура выявления «особей» весьма трудоемка.

«Особью» считается многолетний мицелий с определенным генотипом, и отличить один такой мицелий от другого можно, скрещивая их потомство – проростки гаплоидных мейоспор. Многолетняя грибница у высших базидиомицетов является дикариотической, то есть в каждой клетке присутствует по два гаплоидных ядра, каждое с одинарным набором хромосом, полученным от одного из «родителей». Функционально такая клетка идентична диплоидной. При образовании мейоспор ядра сливаются, гомологичные хромосомы обмениваются участками (происходит рекомбинация), а потом снова расходятся (мейоз). Гаплоидная мейоспора затем прорастает, образуя гаплоидный проросток; клетки двух разных проростков могут слиться в дикариотическую клетку (этот процесс аналогичен оплодотворению – слиянию половых клеток). Из дикариотической клетки затем вырастает многолетний мицелий.

Однако не каждый проросток может «скреститься» с любым другим. Само по себе это не удивительно. У высших растений и животных оплодотворение тоже происходит избирательно, для этого предусмотрено разделение на два пола: одна половая клетка должна быть мужской, другая женской. У базидиомицетов вместо разделения на два пола существует сложная генетическая система регуляции половой совместимости.

Ключевую роль в этой системе играют два несцепленных (расположенных на разных хромосомах) генетических фактора (A и B), каждый из которых содержит несколько генов. У каждого фактора существует множество аллельных вариантов (1, 2, 3 и т.д.). Скреститься между собой могут только потомки мейоспор, имеющих разные аллели обоих факторов. В результате получается как бы огромное множество «полов», причем для каждого «пола» имеется широкий набор «разрешенных» партнеров и несколько менее широкий круг партнеров «запрещенных».

Допустим, родительский дикариотический мицелий имеет генотип A3A5B1B6. В результате мейоза в плодовых телах, образованных таким мицелием, сформируется 4 типа мейоспор: А3В1, А3В6, А5В1, А5В6. Чтобы скрещивание было возможно, оба фактора должны различаться по своему аллельному состоянию. Поэтому вероятность успешного скрещивания между «потомками» (мейоспорами) одного и того же мицелия составляет 25% (какую бы мейоспору мы ни взяли, выясняется, что она может скреститься только с одним из четырех типов мейоспор, имеющихся в потомстве данного мицелия, например А3В1 может скреститься только с А5В6). Однако если мейоспоры происходят от разных родителей, то вероятность успешного скрещивания оказывается близкой к 100%, потому что в популяции много аллельных вариантов каждого фактора, и вероятность, что аллели случайно совпадут у разных мицелиев, обычно невелика.

Вот так и определяют «границы индивидов» у высших базидиомицетов: скрещивают между собой мейоспоры, полученные от двух плодовых тел, и определяют процент успешных скрещиваний. Если он близок к 25% — значит, оба плодовых тела принадлежат одному «индивиду», если он близок к 100% — значит, перед нами разные «особи». Довольно изнурительное занятие, но оно позволило получить крайне интересные и неожиданные результаты.

Например, оказалось, что некоторые индивидуумы осеннего опенка могут занимать несколько гектаров леса, иметь массу в несколько тонн и возраст в полторы – две тысячи лет!

Для большинства грибов, однако, вместо понятия «особь» пользуются термином «генет» – так обозначают генетически дискретные единицы, аналогичные клонам в микробиологии. Генеты возникают в результате гибридизации и последующего вегетативного (бесполого) размножения.

Провести границу между видами у грибов ничуть не легче, чем между индивидами. Морфологический критерий работает плохо: у грибов, как стало ясно в последние десятилетия, полным-полно видов-двойников, то есть форм, внешне практически неотличимых, но никогда не скрещивающихся друг с другом. С другой стороны, многие виды очень полиморфны, и внешние различия между штаммами одного и того же вида могут быть куда выразительнее, чем межвидовые различия. В классификации грибов в последнее время основную роль играют биохимические и генетические критерии.

У грибов чаще, чем у животных и высших растений, происходит симпатрическое видообразование – разделение одного исходного вида на два без географической изоляции (в пределах одного и того же ареала). При симпатрическом видообразовании «дочерние» виды обычно тем или иным способом делят между собой экологические ниши. Например, исходная популяция гриба Fusarium oxysporum, живущего на хлопковых полях, подразделилась на два близнецовых вида, один из которых специализировался на жизни в почве, а другой – на паразитировании в тканях хлопчатника. У гриба Rhizoctonia solani процесс видообразования еще не завершен. Исходная, предковая группа штаммов встречается в целинных почвах и может скрещиваться с другими группами штаммов – своими потомками, которые стали высокоспециализированными паразитами разных сельскохозяйственных растений (картофеля, сахарной свеклы и др.) и уже не могут скрещиваться друг с другом. Среди штаммов этого гриба, избравших в качестве жертвы сахарную свеклу, произошло дальнейшее разделение уже по стадиям развития хозяина: штаммы, поражающие корни сахарной свеклы на ранних стадиях роста, утратили способность скрещиваться со своими родственниками, паразитирующими на корнях взрослого растения. Представители известного рода Pleurotus (вешенка) «разошлись» по погодным условиям: одна группа штаммов, выделенная в вид P. ostreatus, образует плодовые тела осенью, после первого похолодания, а другая (P. pulmonarius) плодоносит летом. Судя по высокому уровню генетического сходства, эти виды разделились совсем недавно.

Генетические механизмы видообразования

Главным условием симпатрического видообразования является формирование репродуктивной изоляции. Иными словами, чтобы превратиться в самостоятельные виды и получить возможность хорошо приспособиться к разным экологическим нишам, стабилизировать свой генофонд, «расходящиеся» популяции должны каким-то образом ограничить генетический обмен друг с другом.

Этого трудно добиться при существовании жестких запретов на скрещивание с близкими родственниками. И действительно, у многих грибов, имеющих половой процесс, симпатрическое видообразование сопряжено со снятием запрета на скрещивание между потомками одного и того же мицелия. Это, конечно, ведет к росту инбридинга (близкородственных скрещиваний), но зато позволяет отказаться от смешения с «чужаками». Снятие запрета на инбридинг (переход от «гетероталличности», или двудомности, к гомоталличности) может сопровождаться потерей части аллелей факторов спаривания или избирательной гибелью некоторых генетических категорий гамет или мейоспор. Часто наблюдается также «псевдогомоталличность» — ситуация, когда грибы, чтобы выработать способность к «самооплодотворению» в обход имеющихся запретов, связанных с факторами спаривания, начинают производить двуядерные мейоспоры, гетерозиготные по факторам спаривания. Из такой мейоспоры сразу, без всякого полового процесса, вырастает дикариотический мицелий, способный к образованию плодовых тел.

Есть и еще более хитрые приемы – например, кассетный механизм переключения типов спаривания, обнаруженный у некоторых сумчатых и базидиальных грибов. В этом случае в геноме имеются кассеты с последовательностями ДНК, гомологичными факторам спаривания. Мейоспора может осуществить сайтспецифичную генную конверсию – иными словами, заменить последовательность ДНК в своем факторе спаривания на другую, взятую из кассеты, и тем самым изменить свой «пол» (тип спаривания). Это дает ей возможность спариваться с другими мейоспорами, произведенными тем же родительским мицелием, которые не осуществили такую же конверсию в своих геномах.

Самым радикальным средством ограничить приток «чужих» генов в генофонд формирующегося вида является полный отказ от полового процесса. Так возникают агамные виды грибов. Одной из причин утраты полового процесса может быть обычный генетический дрейф – случайная утрата популяцией некоторых аллелей факторов спаривания (например, на другой материк может быть случайно занесена грибная спора, из этой споры может со временем развиться бесполым путем большая популяция, но спариваться этим грибам будет не с кем).

Однако утрата полового процесса еще не означает для грибов полного прекращения генетического обмена с другими особями. Остается еще одна возможность – возникновение анастомозов (мостиков) между рядом растущими гифами. Клеточные ядра могут мигрировать по мостикам из одного мицелия в другой, что приводит к обмену генетическим материалом («парасексуальный процесс»).

Этот вид генетического обмена между штаммами ограничивается особыми генами вегетативной совместимости (v-c, vegetative compatibility). Если ядра слившихся клеток несут разные аллели этих генов, гибридная клетка погибает. Получается эффект, обратный тому, который достигается благодаря генам – факторам спаривания. Факторы спаривания препятствуют скрещиванию со «своими», а гены v-c, наоборот, не позволяют обмениваться генетическим материалом с «чужими». Ю. Т. Дьяков подчеркивает, что вегетативная несовместимость по своим функциям сходна с иммунной системой (узнавание «чужого» штамма и гибель слишихся клеток), и поэтому можно считать, что у грибов впервые возникли механизмы симпатрического видообразования, основанные на эксплуатации простейшей иммунной системы. (см. подробнее о таких механизмах в обзоре «Как отличить своих от чужих? Неканонические механизмы репродуктивной изоляции» ).

Опасайтесь зараженных досок

В заключительной части статьи Ю. Т. Дьяков описывает хорошо изученный случай быстрого – всего за несколько десятилетий – появления нового вида гриба Ophiostoma nova-ulmi, возбудителя голландской болезни вязов. Предком этого вида был сравнительно малоагрессивный гриб Ophiostoma ulmi, вызывающий у вязов хроническую форму болезни. Несколько десятилетий назад появились и стали распространяться в Европе агрессивные штаммы (один из них впервые возник в Северной Америке и попал в Европу с зараженными досками). По комплексу биохимических, морфологических и генетических различий агрессивные штаммы заслуживают выделения в отдельный вид. Их распространение вызвало массовую гибель деревьев: только в Великобритании между 1970 и 1980 гг погибло 20 млн вязов. Между неагрессивным предковым видом и его агрессивным потомком уже развилась почти полная репродуктивная изоляция: например, при скрещивании североамериканского агрессивного штамма O. nova-ulmi с неагрессивным O. ulmi образуется в 18 раз меньше плодовых тел, чем при скрещивании представителей агрессивного вида друг с другом.

Автор заключает, что «высокое разнообразие генетических механизмов, влияющих на структуру и эволюцию грибных популяций (двухфакторный гетероталлизм с множественными аллелями каждого фактора, кассетный механизм переключения типа спаривания, внутритетрадная рекомбинация, парасексуальный процесс, вегетативная несовместимость и др.) и частично или полностью отсутствующих у высших эукариот, обеспечивает грибам очень быстрый, взрывной процесс видообразования. Возникновение буквально на наших глазах, в течение нескольких десятилетий, нового вида Ophiostoma nova-ulmi – пример, тщательно документированный вследствие практической важности нового вида, но не единичный. Также при переходе из природных фитоценозов в агроценозы произошло разделение Phytophthora megasperma и Rhizoctonia solani на новые виды и разновидности».

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *