Меню Рубрики

Амилоидный белок при болезни альцгеймера

В начале XX века с помощью немецкого психиатра Алоиса Альцгеймера мир узнал о существовании новой нейродегенеративной болезни. И хотя долгое время исследователи не воспринимали генетическую предрасположенность в качестве важного фактора для развития болезни Альцгеймера, вскоре ситуация изменилась. Однако и сейчас о природе этого заболевания идут ожесточенные споры: кто же во всем виноват – бета-амилоид или APOE4?

Однажды в 1991 году невролог Уоррен Стриттмэттер (Warren Strittmatter) попросил своего руководителя – директора Дьюковского университета Аллена Роузеса (Allen Roses) – взглянуть на результаты своего эксперимента. Стриттмэттер изучал бета-амилоид – основной компонент молекулярных сгустков, обнаруженных в мозге людей с деменцией альцгеймеровского типа. Он искал в спинномозговом ликворе белки, связывающиеся с амилоидом, и в результате наткнулся на аполипопротеин Е (ApoE), который, вроде бы, не имел прямой связи с развитием болезни.

Бета-амилоид, образующий при болезни Альцгеймера нерастворимые бляшки в нервных клетках, традиционно считался основной причиной нейротоксичности при этом заболевании, однако в действительности дело обстоит не так просто. В частности, токсичными могут быть не только фибриллярные, но и промежуточные сферические агрегаты бета-амилоида, на вероятность развития БА положительно влияет недосып, ну а на сладкое – в реальности амилоид может быть вообще не нейротоксином, а компонентом врождённого иммунитета в нервной системе человека.

Профессор Роузес сразу понял, что его коллега нашел нечто важное. Двумя годами ранее ими было обнаружено, что экспрессия некоторых генов из хромосомы 19 способствует развитию деменции, а поскольку Роузес знал, что ген, кодирующий ApoE, также находится на этой хромосоме, его молниеносно осенила идея участия ApoE в развитии болезни Альцгеймера (БА).

В организме человека есть три варианта гена APOE, кодирующих изоформы белка Е2, Е3 и Е4, и Роузес решил выяснить их влияние на развитие болезни Альцгеймера. Для определения отдельных аллелей нужно было провести полимеразную цепную реакцию (ПЦР). Так как ученый имел весьма скромный опыт работы с ПЦР, он хотел привлечь в свою команду нейрофизиологов, но получил отказ: хотя они и были заняты охотой за генами, которые лежат в основе болезни Альцгеймера, АРОЕ показался им неподходящим кандидатом. Роузес вспоминает, как позже в лаборатории ходили разговоры: «. начальник совсем потерял голову от своих безумных идей».

Но Роузес не сдавался. Он попросил помощи у своей жены, генетика Энн Сондерс (Ann Saunders), которая использовала ПЦР в своих исследованиях. Она только что родила дочь и была в декретном отпуске, и потому они заключили соглашение. «Она сделала все эксперименты, пока я присматривал за ребенком», – говорит профессор. В течение трех недель супруги собрали данные, которые в дальнейшем легли в основу серии знаковых публикаций. Они выяснили, что аллель APOE4 способствует развитию БА.

Сегодня, двадцать лет спустя, APOE4 остается ведущим фактором риска для наиболее распространенной формы деменции. Наследование одной копии APOE4 вчетверо повышает риск возникновения заболевания, двух копий – в 12 раз (рис. 1).


Рисунок 1. Носители аллеля APOE4 более подвержены развитию болезни Альцгеймера
по сравнению с теми, кто унаследовал две копии аллеля APOE3 (по Raber J et al., 2004)

Однако данные Роузеса в основном не воспринимали всерьез или критиковали. Впоследствии, даже когда мнение об ApoE поменялось, большинство ученых все равно продолжали работать с бета-амилоидом, как бы «зациклившись» на классике. Но некоторые лаборатории все равно исследовали ApoE, несмотря на равнодушие финансирующих учреждений и научного сообщества и на отсутствие ресурсов, необходимых для проведения масштабных экспериментов.

Долгое время было неизвестно, какие функции белок ApoE выполняет в головном мозге, и постепенно эта головоломка стала интересовать многих нейрофизиологов. Интерес к липопротеинам продолжал расти, – отчасти потому, что клинические испытания лекарств, нацеленных на бета-амилоид, часто заканчивались неудачей. Многие исследователи начали скрупулезно изучать белок ApoE4 и, как следствие, привлекли внимание фармацевтических компаний. «Амилоидные подходы» постепенно перестали использовать, зато начали разрабатывать препараты, направленные на аполипопротеин.

«Несмотря на отсутствие уверенных доказательств, амилоидная гипотеза стала в свое время сильным научным постулатом», – говорит Завен Хачатурян, президент некоммерческой компании «Предотвратим Болезнь Альцгеймера» (Prevent Alzheimer’s Disease 2020) и бывший координатор деятельности, связанной с исследованием БА в Национальных институтах здоровья США. До недавнего времени, по его словам «никто не пытался задать фундаментальный вопрос – правильно ли мы определили основную предпосылку болезни?».

Существуют разные доводы относительно того, почему открытие Роузеса было проигнорировано. Многие сходятся во мнении, что генетик выбрал неудачное время для обнародования своих результатов. В 1991 году Джон Харди (John Hardy) и Дэвид Олсоп (David Allsop) предложили «гипотезу амилоидного каскада». Они утверждали, что болезнь Альцгеймера является результатом аномального накопления бета-амилоидных бляшек в тканях мозга. Научное сообщество поддержало предложенную идею, которую вскоре начали активно финансировать.

Но Роузес не подписался под этой теорией: «. амилоиды являются одними из многих веществ, которые формируют бляшки; в конечном итоге они разрушают клетки и вызывают атрофию мозга. У меня и мысли не было, что это было причиной деменции». Говоря так, он, возможно, хотел скрыть возможную связь ApoE/Аb, и случайно создал конкуренцию между двумя гипотезами за финансирование. К сожалению, Роузес так и не получил гранты для работы с ApoE.

Были и технические препятствия для изучения ApoE. Белок входит в состав различных липопротеинов плазмы крови и является довольно сложной фармакологической мишенью при работе с головным мозгом. ApoE имеет липофильную часть и поэтому при биохимическом анализе может агрегировать с другими молекулами. Работа с такими белками требует глубокого понимания биохимии липопротеинов и методик работы с ними.

Амилоид же, наоборот, был легкой мишенью. После двух десятилетий тщательных наблюдений был создан ряд лекарств, которые изменяют метаболизм амилоида, но они до сих пор не оправдали ожиданий. Из шести препаратов, проходивших клинические испытания на больных со II или III стадией заболевания в 2012 году, половина сразу же отпала из соображений безопасности или отсутствия эффективности. И эта ситуация происходит на фоне старения населения, шаткости системы здравоохранения и нехватки лекарств для болезни Альцгеймера. «Количество неудачных испытаний, направленных на лечение деменции Альцгеймера, резко возросло», – говорит Леннарт Мак (Lennart Mucke), директор Гладстонского института неврологических заболеваний (Калифорнийский университет, Сан-Франциско). – «Это действительно пошатнуло фармацевтическую индустрию».

Три оставшихся препарата, которые нацелены на бета-амилоид, в настоящее время проходят испытания на больных, а также на людях с высоким риском БА, у которых еще не развились симптомы. Позитронно-эмиссионная томография показала, что мозг подопытных с высоким риском развития БА отличается от здорового мозга за десятилетия (!) до того, как начинает накапливаться бета-амилоид или разрушаться нейроны. В результате исследований, которые будут проводиться в течение следующих шести лет, ученые поймут, способны ли данные лекарства отсрочить наступление заболевания или нет. Среди исследователей и представителей фармацевтической индустрии появилось ощущение, что это – последний шанс для амилоидной гипотезы. На фоне этих сомнений ApoE вновь оказался в центре внимания.

По словам Мака, если испытания закончатся неудачей, ученые будут отчитываться перед инвесторами, предоставляя все данные доклинических и ранних клинических испытаний. Он надеется, что исследователи АроЕ вскоре получат большое преимущество. Несмотря на препятствия в этой области, у ученых продолжает крепнуть подозрение, что именно ApoE4 является предпосылкой для возникновения болезни. Этот факт подтверждают группы Мака и Гольцмана (Holtzman) в опытах на трансгенных мышах, которые несут в себе изоформы ApoE человека.

Скорее всего, ApoE участвует в развитии БА двумя различными путями, один из которых – амилоид-зависимый. И у животных, и у человека ApoE4 способствует отложению Бета-амилоид в мозговом веществе, в то время как ApoE3 считается «нейтральной» изоформой, а ApoE2 – «защитной» формой, уменьшающей накопление бляшек. «Это достаточно убедительные данные», – говорит Хольцман.

Другой механизм не предусматривает взаимосвязи с амилоидом. Когда нейроны находятся в состоянии стресса, они экспрессируют ApoE для своего восстановления. «Плохая» форма – ApoE4, – как правило, разрушается на токсичные фрагменты, которые повреждают митохондрии и модифицируют цитоскелет.


Рисунок 2. Две расходящиеся гипотезы о том, как АроЕ способствует болезни (Fulmer, 2012)

Оценить вклад этих двух механизмов в риск развития болезни Альцгеймера крайне сложно, говорит Хольцман, но он и его коллеги считают, что трансформация вредоносной изоформы ApoE в «нейтральную» может стать перспективным подходом для лечения БА. В Гладстоне исследователи начали изучать этот вопрос, и уже найдены небольшие регуляторные молекулы, которые трансформируют ApoE4 в ApoE3-образный белок и тем самым снижают аномальную фрагментацию первого. В культуре клеток даже низкие концентрации этих молекул могут уменьшить разрушение митохондрий и дисфункцию нейронов. В настоящее время эти молекулы проходят испытания на животных, и если они в конечном счете окажутся безопасными и эффективными, врачи будут назначать их пациентам, предрасположенных к БА, так же, как статины – больным с высоким уровнем холестерина и с повышенным риском сердечно-сосудистых заболеваний.

Такие препараты могут быть эффективными и для лечения других болезней. «Митохондриальная гипотеза достаточно логично и лаконично объясняет, к чему приводит экспрессия ApoE4», – говорит Мак, – «не только в контексте болезни Альцгеймера, но, возможно, также и при других заболеваниях». Существует доказательство того, что появление этой изоформы – возможный фактор риска также при болезни Паркинсона и эпилепсии. Данный белок также связывают с развитием деструктивных процессов после черепно-мозговой травмы и ускоренным развитием ВИЧ-инфекции. Пятнадцать биотехнологических компаний уже сотрудничают с Гладстоном для разработки лекарственных веществ, действующих по схожему принципу.

Читайте также:  Для людей с болезнью альцгеймера

Несмотря на отсутствие грантов на исследования ApoE, Роузес никогда не сдавался. Но через несколько лет, когда его группа обнаружила связь между ApoE и болезнью Альцгеймера, он устал от постоянного денежного противостояния и оставил науку. Проработав в фармацевтической индустрии десять лет, в течение которых он не переставал исследовать ApoE, в 2008 году он снова возвращается в Дьюковский университет.

В 2009 году его группа описала участок некодирующей ДНК с геном TOMM40, который располагается рядом с APOE на девятнадцатой хромосоме. Этот участок ДНК (сокращенно – 523) варьирует по длине и, в зависимости от этого, может определять уровень экспрессии генов TOMM40 и АРОЕ.

По словам Роузеса, это было важное открытие, так как белок, кодируемый геном TOMM40 – Tom40, – является необходимым для «здоровых» митохондрий. Tom40 образует канал во внешней митохондриальной мембране, через который импортируются белки, необходимые для нормального деления этой органеллы. «Мы знали о существовании такого механизма в течении 10 лет», – говорит ученый, – «но то, что он приводит к болезни Альцгеймера, мы и не подозревали».

Роузес продолжал утверждать, что участок 523 можно использовать для разработки терапии и более точного предсказания болезни. Подавляющее большинство людей рискует встретиться со своим Альцгеймером, если только проживет достаточно долго, а ведь носителями аллеля APOE4 являются только 25% населения. Значит, тест на носительство этого аллеля никогда не будет до конца точным предиктором. Но генотипирование по обоим генам – АРОЕ и TOMM40 – может существенно увеличить точность, говорит Роузес. В его лаборатории открыли, что APOE3 – наиболее частая изоформа – обычно наследуется вместе или с коротким, или с очень длинным участком 523. И у носителей двух аллелей APOE3 возраст наступления заболевания будет зависеть от конкретного варианта участка 523, наследуемого вместе с APOE.

Некоторым лабораториям удалось найти доказательства, подтверждающие гипотезу Роузеса, однако у других повторить исследования на TOMM40 так и не удалось, и возникли сомнения в реальности влияния этого гена на риск развития БА. Однако Роузес не сомневается в правильности своих гипотез и считает, что геномные исследования, не подтвердившие его результатов, обладали недостаточной силой для выявления сцепливания TOMM40 и болезни Альцгеймера.

Роузес надеется, что вскоре он сможет подкрепить свои результаты клиническими исследованиями, которые будут проводиться в основанной им компании Zinfandel Pharmaceuticals. Вместе с японской фармацевтической компанией Takeda Зинфандель в настоящее время финансирует фазу III клинических испытаний (под названием TOMMORROW), призванную проверить идеи Роузеса на деле. TOMMORROW должна оценить риски развития БА в зависимости от возраста пациента и вариантов APOE и TOMM40. Для запуска программы будут отобраны около 6000 здоровых пожилых людей, и исследования будут продолжаться около 5 лет.

Программа будет также исследовать возможность того, что пиоглитазон – препарат для лечения пациентов с сахарным диабетом 2 типа, – в малых дозах будет задерживать развитие БА у лиц, отнесенных к группе высокого риска развития болезни Альцгеймера. Проверка этой идеи вызвана тем, что опубликованы результаты опытов на животных и даже на людях, которые говорят о способности пиоглитазона предотвращать или уменьшить патологию и симптомы, связанные с болезнью Альцгеймера. Роузес думает, возможный механизм этого – стимуляция деления митохондрий.

Даже если получить мощное лекарство против болезни Альцгеймера так и не удастся, толк в этих испытаниях все равно будет: научившись задерживать развитие БА хотя бы на два года, можно уменьшить число больных в США через 50 лет на 2 млн. человек, что очень и очень неплохо. Кроме того, результаты этих испытаний заставят исследователей всего мира по-новому взглянуть на деменцию. Такое сложное расстройство, как болезнь Альцгеймера, нельзя изучать только с одной стороны, – пусть и включающей ApoE4 или еще что-нибудь. По-видимому, нейрофизиологи близки к тому, чтобы признать ограниченность своих прежних взглядов и частично пересмотреть их, направив исследования по новым дорожкам, в конце которых будет разгадка проблемы, лишающей нас ума.

источник

источник

Амилоидоз — проклятие укладывания протеинов

Амилоид встречается или появляется не только у больных БА, но образуется и в результате неправильного построения белка, что может стать причиной многих болезней, называемых амилоидозом. Так, например, амилоидные отложения вызывают диабет, а также заболевания селезенки, печени, почек и сердца.

Многократно цитируемая нами А. Фуртмайер-Шу приводит пример с пациенткой Анной Рихтер. Мадам Рихтер, обычно очень живая женщина, на протяжении четырех десятков лет своей жизни никогда серьезно не болевшая, вдруг почувствовала недомогание. Врач определил у нее в моче белок и диагностировал амилоидоз — загадочную болезнь, которая почти всегда ведет к смерти. Шесть недель спустя Анна Рихтер умерла.

В различных органах многих людей на протяжении всей жизни незаметно собираются амилоиды. Твердые, как доски, но в то же время салообразные и стеклоподобные отложения медики наблюдают уже в течение двух столетий в селезенке, печени, почках и надпочечниках. В печени, например, иногда образуются куски до 5 кг весом. Определенные органы — печень, сердце или почки — могут быть поражены лишь в далеко продвинутой стадии заболевания. Поэтому жалобы возникают только в последней стадии, когда размеры отложений уже достаточно велики. Такие тяжелые формы амилоидоза возникают редко, патологоанатомы встречают их при вскрытии с частотой, равной, примерно 1 %. Тем не менее невыявленные амилоидные отложения более часты, чем, например, рак. Очевидно, умирает от этого не каждый. Известный разработчик амилоида Линке подозревает, что амилоидные отложения в органах нередко могут быть причиной широкого спектра старческих заболеваний. Ученый далее поясняет: «Так, например, возникновение старческого диабета связано с амилоидозом».

Как показали опыты в Швеции, амилоид уменьшает производство инсулина в поджелудочной железе. Кроме того, так называемые нарушения ритма сердца происходят во многих случаях, вследствие отложения амилоида в сердечной мышце, которую они сильно ослабляют. Именно от этой болезни скончался Жорж Гленнер, уже упомянутая нами звезда американской микробиологии.

Сорок процентов пожилых людей имеют в своих органах амилоидные отложения, образованию которых способствуют различные белковые соединения. Эти различные белки имеют одну общность — они обладают одинаковыми структурными областями, под влиянием которых белковые молекулы вместо того, чтобы укладываться в клубок, образуют блокирующие волокна. «Амилоидоз — это проклятие укладывания протеинов», — констатировал в свое время Бейройтер, специалист в области биохимии.

Протеины обеспечивают свою стабильность в крови и других жидкостях нашего тела за счет способности к укладыванию своих молекулярных цепей в форме клубков. Биохимики называют это свойство гармоникоподобного укладывания ?-укладыванием. Зарекомендовав себя в течение эволюционного развития как полезное, оно несло в себе одновременно и своеобразную опасность: если физиологические соотношения неблагоприятны, то вместо шарообразных строений или структур выстраивались открытые, вытянутые молекулярные цепи.

При высокой молекулярной плотности отдельные протеиновые молекулы не в состоянии принимать шарообразную форму — как открытая рука не может образовать кулак, а остается открытой и приклеивается к другой «открытой руке» следующей молекулы. Множество таких связанных вместе «рука в руке» молекул представляют собой своеобразную свернутую пачку. Эти образования, которые в процессе своего рода кристаллизации, укладываются в фибриллы, не растворяются, не могут быть разрушены и требуют больше пространства, чем круглые шарообразные молекулы. Они разрушают клетки или тонкие и нежные кровеносные сосуды, на которых откладываются, что ведет к подавлению еще здоровых клеток новообразованными кристаллическими структурами.

Завоевание пространства головного мозга и, как следствие, вытеснение и подавление нормальных, здоровых клеточных структур очень часто лежит в основе объяснения возникновения БА и других болезней, связанных прежде всего с разрушением человеческой личности. В прогрессивной стадии БА у большинства пострадавших амилоидные отложения накапливаются также и в кровеносных сосудах мозга.

Почему протеины уже больше не выполняют свои нормальные функции в нервных клетках, а изменяют свои трехмерные структуры в сторону образования кристаллических агрегатов — вот главный вопрос различных современных спекуляций.

При помощи химических методов и посредством специфических антител можно анализировать состав агрегатов этих отложений при различных заболеваниях. Например, при болезни Крейцфельда — Якоба (БКЯ) агрегаты состоят в основном из прионовых протеинов, функции которых в клетке еще неизвестны; при БА-агрегаты образуются и располагаются между нервными клетками и построены на 90 % из ?-амилоидопротеина; частицы Леви у пациентов с болезнью Паркинсона находятся внутри клеток и состоят из протеина под названием ?-синуклеин.

Завоевание пространства головного мозга и, как следствие, вытеснение и подавление нормальных, здоровых клеточных структур очень часто лежит в основе объяснения возникновения БА и других болезней, связанных прежде всего с разрушением человеческой личности.

Какие функции этот протеин выполняет в клетке в нормальном состоянии, еще неизвестно, однако известно, что он принимает участие в передаче нейронового сигнала через синапсы к соседней клетке. Так, например, при обучении пению у певчих птиц образуется протеин, очень напоминающий ?-синуклеин. Он, как любой протеин, построен из цепей аминокислот, химические свойства которых определяет их трехмерная пространственная структура. В процессе кристаллизации произвольно образуются протеиновые волокна, которые представляют собой очень тонкую структуру, до удивления напоминающую структуру отложений у Паркинсона-пациентов. Так возникло предположение, что кристаллизация ?-синуклеина играет решающую роль при образовании отложений. Этот процесс может быть смоделирован при различных условиях. Так, например, с повышением степени кислотности и оксидативного стресса, повышается тенденция к кристаллизации.

Наряду с ?-синуклеином в мозге был открыт еще один, близкий к нему по структуре, ?-синуклеин. Он находится в синапсах, там же, где и ?-синуклеин, только имеет значительно более низкую склонность к кристаллизации. Разница в том, что ?-синуклеин имеет в составе своей молекулы чрезвычайно гидрофобный (склонный к водоотталкиванию) отрезок (аминокислоты от 60 до 95), в то время как у ?-синуклеина нет соответствующего отрезка. Водоотталкивающие отрезки молекул имеют тенденцию к соединению, так как они окружены «враждебными» водяными молекулами.

Читайте также:  Болезнь альцгеймера уход за лежачими

Белковые отложения, обладающие сопротивлением к разрушению, содержат водоотталкивающие, то есть гидрофобные аминокислоты. В итоге белок становится нерастворимым и оседает. Наоборот, «здоровые», растворимые белковые молекулы сложены таким образом, что гидрофилы, то есть «любящие» воду элементы аминокислот, укладываются по внешней стороне, а гидрофобные элементы — внутри молекулярного пучка.

«Степень растворения в воде, — отмечает уже упомянутый нами Райнольд Линке из биохимического Института Планка в Мюнхене, — является решающим фактором, ответственным за то, получится ли из «физиологически здорового» протеина амилоидный протеин». Это объясняет то, почему из самых различных протеинов может образоваться амилоид. После хронического воспаления, например такого, как ревматический артрит, амилоид образуется в переизбытке из осколков протеина САА или из белка с целью образования защитных античастиц. Напротив, ?-А4-амилоид образуется в мозге больных БА из протеина мембран клеток мозга. При неблагоприятных обстоятельствах из молекулы предшественника амилоида, которая синтезируется всеми нервными клетками, образуется амилоид-А4-протеин. Он накапливается внутри клеток вместе с Тау-протеином, входящим в состав клеточного скелета, в результате образуются нейрофибрильные пучки. Контакты между окончаниями нервных клеток — синапсами — прерываются, и ответвления нервных клеток заканчиваются в амилоидосодержащих отложениях.

Для ученых было важно установить, что не только частицы Леви-Паркинсон-пациентов состоят из ?-синуклеина, но и бляшки многих БА-пациентов содержат примерно 10 % продуктов распада ?-синуклеина, состоящего исключительно из гидрофобных участков — именно из той части, которая ответственна за образование агрегатов.

Как установила группа ученых из Граца (Австрия) под руководством Манфреда Уиндиша в совместной работе с группой ученых из Сан-Диего, тенденция к кристаллизации ?-синуклеина падает драматически, когда имеется достаточно ?-синуклеина.

В мозге трансгенных мышей, организм которых усиленно образует ?-синуклеин, откладываются массивные протеиновые агрегаты, и животные проявляют симптомы, подобные болезни Паркинсона. Если одновременно у этих животных было синтезировано много ?-синуклеина, количество и величина агрегатных отложений значительно шла на убыль, вместе с этим исчезали и клинические симптомы.

К подобным результатам пришли ученые в лабораторных экспериментах с очищенным протеином. При этом агрегаты отложений наблюдались не с помощью сложных электронномикроскопических анализов, а посредством электрического разделительного эксперимента. Протеиновые агрегаты «путешествуют» в гене, находящемся в электрическом поле, значительно медленнее, чем отдельные ?-синуклеиновые протеины. Возможно, баланс двух видов синуклеинов и решает вопрос о склонности к кристаллизации.

Область протеина, ответственного за торможение кристаллизационных процессов, может быть изменена за счет его генетической модификации, когда используется не весь ?-синуклеин, а только начало его цепи — первые 35 аминокислот. Этого короткого отрезка уже достаточно для того, чтобы у мышей, которые производят большое количество ?-синуклеина, резко уменьшились симптомы болезни. В дальнейших экспериментах ученые смогли еще больше сузить область, ответственную за кристаллизацию: только один короткий отрезок протеина, состоящий из 14 аминокислот и известный как пептид, достаточен для того, чтобы получить желаемый эффект.

Ученые из Граца пробуют сейчас с помощью достигнутых результатов разработать соответствующие медикаменты. К сожалению, пептид, который может быть изготовлен синтетически, невозможно применять непосредственно для терапии, так как он быстро разрушается в организме. Противостояние пептидов разрушительным энзимам организма должно быть повышено посредством химической модификации аминокислот.

Раньше считалось невозможным даже предположить, что пептиды могут переноситься с кровью через экстремально гидрофобные барьеры в мозг. Сейчас же появляется все больше доказательств тому, что это может быть реализовано посредством коротких модифицированных пептидов. «Лучше применять не сам пептид, а только синтезированные посредством органической химии соединения, имеющие эффект, подобный пептидам, — говорит Манфред Уиндиш. — Многие органические соединения очень медленно разрушаются человеческим организмом. Кроме того, продукты органического синтеза, как правило, значительно дешевле».

При БА амилоидопротеин превращается в камнеподобную структуру и образует ядро нейротической бляшки. Но и без БА в мозге почти каждого человека на барьере девятого десятка лет находятся отложения белкового амилоида.

Для врачей второй половины XX столетия амилоид представлялся в виде шлакового образования, продукта обмена веществ. Только с применением современной биохимической и иммунологической технологии стало возможным изучать амилоид.

Доктор Линке замечает: «Очень трудно осознать, что наш организм вырабатывает такое вещество, от которого он не может больше освободиться и которое он не может ни выделить, ни разрушить». — И далее: «Может быть, в постоянных циклических процессах разрушения и восстановления, происходящих в нашем организме каждые пару лет и ведущих к обновлению, происходят ошибки».

Если, например, какой-либо энзим (белковый фермент) «слабо» работает, то наш организм компенсирует этот недостаток тем, что увеличивает во много раз производство недостающего энзима. Такое перепроизводство белковой массы в течение длительного времени превышает потребности организма. Образуемые в процессе обмена веществ белки должны быть разрушены и выведены из организма. Перепроизводство белковых масс возникает и при инфекционных или хронических воспалительных процессах. Например, при инфекции печени клетки ее выделяют защитные молекулы, называемые САА, в количестве, в 1 000 раз превосходящем норму.

В случае, например, старческого диабета наличие амилоида вызвано одним сравнительно недавно открытым гормоном поджелудочной железы, а именно производной кальция.

Многие люди уже рождаются с белком, который имеет тенденцию к переходу в амилоидную структуру.

Природа не оставила беззащитными клетки и механизмы взаимодействия между ними. В системе оборонительных процессов очень важную роль играет уже упомянутый нами АРР.

АРР — восстановительный протеин, и поэтому он в больших количествах производится в нервных клетках. Повреждения, наносимые клетке, например кислородными радикалами, должны быть ликвидированы с помощью АРР. Тем самым, возникает повышенная потребность в восстановительных процессах, что ведет к усиленному образованию АРР. При разрушении нервноклеточных контактов в старости также возникает необходимость в восстановительных процессах, в связи с чем потребность в АРР многократно возрастает. Эксперты считают, что перепроизводство АРР является тем самым процессом, который ведет к БА.

Сам амилоидопротеин является всего лишь маркером и индикатором, ранним признаком БА, который указывает на этот процесс. Чем больше имеется АРР, тем больше вырезается амилоидопротеина. Амилоидопротеиновый маркер присутствует в спинномозговой или мозговой жидкости. Люди в ранней или средней стадии развития БА по сравнению со здоровыми людьми имеют значительно повышенное содержание амилоидопротеина в мозговой жидкости.

В поздней стадии развития болезни, напротив, содержание амилоидопротеина в жидкости мозга уменьшается в связи с тем, что на этой стадии он в большей степени расходуется на склеивание бляшек и нейрофибрильных образований. Старые люди, еще не страдающие какой-либо формой деменции, при определенных условиях также показывают наличие амилоидопротеина в мозговой жидкости.

Это обнаружили немецкие и шведские ученые, охватившие I 34 пациента в возрасте 43–88 лет. При этом у некоторых участников с незначительными проблемами памяти или с депрессиями содержание амилоида в мозговой жидкости было выше, чем у БА-пациентов.

Тем самым было достаточно четко установлено, что у людей с длительными депрессиями, а также у личностей с легкими нарушениями памяти склонность к образованию амилоидопро-теинов значительно повышена.

источник

Экология потребления. Здоровье: Хотя болезнь Альцгеймера активно исследуют на протяжении многих лет, механизмы ее возникновения остаются неясными.

Хотя болезнь Альцгеймера активно исследуют на протяжении многих лет, механизмы ее возникновения остаются неясными.

Обычно появление основных симптомов болезни связывали с отложениями в головном мозге белка бета-амилоида – так называемыми амилоидными бляшками.

Авторы нового исследования полагают, что ключевую роль играют другие образования, которые обнаруживаются в мозге больных – нейрофибриллярные клубки, состоящие из тау-белка. Хотя пока среди ученых нет единства по поводу сравнительного вклада бета-амилоида и тау-белка в развитие болезни, полученные результаты, возможно, помогут разработке новых препаратов для ее лечения.

Скопления амилоидных бляшек при болезни Альцгеймера были открыты уже довольно давно. Они обнаруживались как при посмертном исследовании мозговой ткани, так и у живых больных – при помощи позитронно-эмиссионной томографии. Для этого в организм вводят радиоактивный изотоп, который образует соединение с интересующим веществом (в данном случае – с бета-амилоидом). Когда скопления целевого вещества оказываются “помечены”, их распределение в организме отслеживают по гамма-квантам, возникающим при позитронном распаде.

Но тут же возникала загадка: медикам было известно немало случаев, когда у пациентов, мозг которых был полон амилоидных бляшек, не было никаких признаков болезни Альцгеймера. Число таких людей в некоторых исследованиях достигало 30 %. Данный факт заставил ученых подозревать, что другая аномальная белковая структура – нейрофибриллярные клубки из тау-белка может быть фактором, важным для развития болезни.

Обычно тау-белок в организме участвует в образовании микротрубочек – важного элемента цитоплазматической структуры клеток. Но у пациентов с болезнью Альцгеймера, а также после черепно-мозговых травм обнаруживаются скопления тау-белка, к молекулам которого присоединено большое количество фосфатных групп. Из-за них белок переходит в нерастворимую форму, и его клубок остается прикрепленным к нейронам головного мозга.

Влияние нейрофибриллярных клубков на здоровье до конца не изучено. До недавнего времени единственным методом исследования, доступным в данном случае, было измерение уровня тау-белка в ткани головного мозга после смерти больного или же у живого пациента в спинномозговой жидкости. Позитронно-эмиссионная томография не могла помочь, так как не располагала радиоизотопами, которые подходили бы для того, чтобы пометить тау-белок в организме.

Теперь эта проблема решена и соответствующие препараты найдены.

Читайте также:  Как определить что у тебя болезнь альцгеймера

Поэтому невролог Бо Ансес (Beau M. Ances) и его коллеги из Университета Вашингтона в Сент-Луисе смогли впервые провести исследование распределения нейрофибриллярных клубков в головном мозге у живых пациентов. Одновременно они использовали и радиопрепарат для отображения бета-амилоида. Таким образом, ученые получили картину одновременного распределения в мозге двух связанных с болезнью Альцгеймера белков.

В исследовании участвовали десять пациентов с легкой степенью болезни Альцгеймера и 36 здоровых. Как показали ученые, чем больше у человека отложений тау-белка в височной доле мозга, тем сильнее у него проявляются нарушения памяти и внимания, характерные для болезни Альцгеймера.

Аналогичного соотношения для бета-амилоида не обнаружилось. Исследователи пришли к выводу, что позитронно-эмиссионную томографию, направленную на обнаружение амилоида, можно использовать для выявления самых ранних стадий болезни Альцгеймера. Тогда как тот же метод, но с использованием веществ, нацеленных на тау-белок, будет эффективен при выявлении перехода от ранних, несимптоматических стадий к легкой степени болезни Альцгеймера.

Бо Ансес подозревает, что решающим в развитии болезни становится совместное влияние на нервную ткань скоплений амилоида и тау-белка. Пока в мозге накапливаются только амилоидные бляшки, он еще в состоянии частично компенсировать их воздействие, но появление нейрофибриллярных клубков становится ключевым фактором, и симптомы болезни начинают нарастать.

Одновременно ученые проверили содержание тау-белка в спинномозговой жидкости участников исследования и обнаружили корреляцию его уровня с количеством тау-белка в височной доли головного мозга. Следовательно, анализ спинномозговой жидкости может служить методом диагностики.

Пока удалось отметить связь уровня тау-белка с симптомами болезни Альцгеймера в один момент времени. Как отмечает, комментируя результаты данного исследования, невропатолог Педро Роза-Нето из Университета Макгилла в Монреале, в будущем еще предстоит определить, существует ли связь изменения содержания тау-белка в мозге с нарастанием симптомов с течением времени. Бо Ансес говорит, что подобные исследования уже ведутся, и выражает надежду, что со временем исследователи смогут определять стратегию лечения болезни Альцгеймера, основываясь на том, какова биохимическая ситуация в мозге пациента в конкретный момент. опубликовано econet.ru

Понравилась статья? Тогда поддержи нас, жми:

источник

Если предположение исследователей верно, то амилоидный белок Aβ приобретает очень драматичный ореол: будучи предназначен для защиты нервных клеток от инфекции, при определённых условиях он сам становится хуже любой заразы.

Болезнь Альцгеймера — основную форму старческого слабоумия — связывают с небольшим белком Aβ (β-амилоидом), нерастворимые отложения которого в нервной ткани оказывают разрушительный эффект на высшую нервную деятельность. β-Амилоид образуется вследствие ферментативного расщепления гликопротеина APP, в норме всегда присутствующего в мембранах нейронов и других клеток. Нормальная физиологическая роль ни этого белка, ни его метаболита Aβ до недавнего времени была неизвестна. Исследователи из Массачусетского госпиталя нашли возможную функцию белка Aβ в норме. Обнаружено, что синтетические аналоги Aβ и препараты височной доли мозговой ткани альцгеймеровских больных обладают мощной антимикробной активностью, а животные с нарушенным синтезом Aβ страдают сниженным иммунитетом. Всё это позволяет предположить, что белок Aβ — часть системы врождённого иммунитета в нервной системе человека.

Рисунок 1. Августа Д., пациентка Алоиса Альцгеймера (в честь которого БА получила своё название), 1901 г.

Болезнь Альцгеймера (БА) считается бичом развитых стран, поскольку с увеличением продолжительности жизни вероятность развития этого вида старческой деменции возрастает многократно. Хотя механизм развития заболевания в общих чертах установлен, эффективного лечения, способного противостоять деградации нервной ткани и вследствие этого деградации самой личности больного, пока не существует. Амилоидная гипотеза, объясняющая причины возникновения БА, говорит, что первым этапом развития заболевания является повышенная продукция амилоидного белка Aβ (или β-амилоида), в определённых условиях (прежде всего, в высокой концентрации) претерпевающего конформационную перестройку: в его структуре начинают преобладать β-тяжи (кстати, отсюда и пошло название). «Перерождённый» Aβ, подобно прионам, образует нитевидные амилоидные агрегаты — нерастворимые жёсткие фибриллы больших размеров, обладающие токсическим действием и в прямом смысле разрушающие мозг. Кроме того, амилоидная форма Aβ конвертирует «нормальный» растворимый белок в токсичную конформацию.

Кстати, амилоидная форма Aβ становится токсичной ещё до полимеризации в фибриллы: токсический эффект появляется на стадии сферических агрегатов, построенных уже из «вредных» белковых молекул с повышенным содержанием β-структур [1]. Между прочим, недавно обнаружена прямая связь концентрации белкá Aβ в спинномозговой жидкости с циркадным ритмом и недосыпанием, которое может быть одним из факторов развития болезни Альцгеймера [2].

β-Амилоид образуется в результате протеолитического расщепления предшественника — мембранного гликопротеида APP (также обозначают ПБА — предшественник β-амилоида). В процессе участвуют два фермента — β- и γ-секретазы, — которые «выщепляют» β-амилоид (белок длиной 40 или 42 аминокислотных остатка) из состава предшественника и секретируют его во внеклеточную область. До недавнего времени нормальная физиологическая роль β-амилоида была неизвестна, и его можно было воспринимать как горький молекулярный курьёз, часто приводящий собственный организм к такому тяжёлому последствию, как болезнь Альцгеймера.

Американские исследователи из Массачусетского госпиталя, похоже, наконец-то установили нормальную функцию Aβ: скорее всего, он имеет отношение к врождённому иммунитету [3]. «Многие годы считалось, что β-амилоид — не более чем молекулярный мусор, весьма не безвредный, впрочем. Наши результаты говорят, что этот белок — нормальный компонент системы врождённого иммунитета мозга, — говорит Рудольф Танзи (Rudolph Tanzi), один из авторов работы. — В частности, факторы, „включающие“ врождённый иммунитет — не только инфекция, но и травма или инсульт, — способствуют развитию болезни Альцгеймера и отложению Aβ в мозгу» [4].

Рисунок 2. Интеллектуальная активность, в том числе увлечение игрой в шахматы, и регулярное общение коррелируют со сниженным риском развития болезни Альцгеймера, по данным эпидемиологических исследований, однако причинно-следственная связь пока не доказана

Этому открытию предшествовало наблюдение, что Aβ во многом напоминает антимикробные пептиды (АМП) [5], являющиеся основой врождённого иммунитета большинства многоклеточных организмов, — в частности, пептид LL-37 человека, относящийся к группе кателицидинов. Кроме них, у человека есть ещё две группы АМП, участвующих в формировании врождённого антибактериального иммунитета, — дефензины и гистатины. От антител (лежащих в основе приобретённого, или специфического, иммунитета) их отличает то, что они могут действовать в нервной ткани и в мозгу, куда антитела «не добираются», и защищают человека от, например, менингита и нейрокандидоза. Ещё одна мишень действия этих пептидов — это вирусы и даже раковые клетки.

Схожесть некоторых физико-химических и биологических свойств β-амилоида и пептида LL-37 подтолкнула учёных изучить антимикробную активность Aβ, которой никто ранее не занимался. Результаты превзошли ожидания: синтетические аналоги Aβ40 и Aβ42 ингибировали развитие восьми из 15 исследованных микроорганизмов с активностью, равной или даже превышающей активность LL-37. Среди микроорганизмов, ингибируемых амилоидом, — грибок Candida albicans, кишечная палочка E. coli, три разновидности стафилококка, внутриклеточная паразитическая бактерия листерия и другие.

Чтобы удостовериться в том, что токсичность для бактерий не является следствием реактивов белковой химии, которые могли остаться после очистки белкóв, в следующем эксперименте изучили способность препарата ткани височной доли мозга (а именно там сильнее всего депонируется амилоид) ингибировать рост грибка Candida; в качестве контроля использовали препараты ткани не болевших пациентов того же возраста, а также образцы из других участков мозга, в которых не наблюдается существенных отложений Aβ. (Поскольку исследование проводилось в крупной больнице, недостатка в материале для исследования — мозговой ткани умерших пациентов — не было.) Эксперимент полностью подтвердил гипотезу, и, более того, антитела к β-амилоиду возвращали грибок «к жизни», подтверждая, что это именно белок Aβ ингибировал рост микроорганизмов.

Кроме того, оказалось, что трансгенные мыши с инактивированным геном одной из секретаз, генерирующих белок Aβ, сильнее подвержены влиянию различных патогенов; то же самое можно сказать и про людей, в ходе клинических испытаний получавших препарат, снижающий уровень Aβ42. Кстати, уменьшение концентрации хорошо изученного АМП LL-37 тоже увеличивает заболеваемость, но и чрезмерно высокая его доза не хороша, потому что приводит к отложению бляшек, подобных атеросклеротическим. Склонность к образованию фибрилл, подобных амилоидным, есть и у других АМП: хорошо известный антимикробный белок лактоферрин образует нерастворимые агрегаты при желатинозной дистрофии роговицы.

Изучение действия β-амилоада на бактерии показало, что он связывается с мембранами микроорганизмов, несмотря на то, что, по сравнению с подавляющим большинством АМП, имеет отрицательный, а не положительный заряд, — то есть, одного знака с мембранами бактерий. Возможно, эта на первый взгляд невыгодная организация необходима для преодоления специальных защитных систем бактерий, нейтрализующих катионные (положительно заряженные) пептиды. Ещё одним тяжело объяснимым качеством Aβ является его токсичность по отношению к собственным клеткам, что и приводит в ряде случаев к серьёзным расстройствам. Одно из возможных объяснений этому — что β-амилоид является также «оружием» против раковых клеток своего организма, но, даже если это и так, никаких подробностей процесса пока не известно, так же как и не известно толком, что вызывает повышение его продукции при БА.

Рисунок 3. Чарлтон Хестон и Рональд Рейган на встрече в Белом Доме, 1981 год. Оба к концу жизни заболели болезнью Альцгеймера.

«Необходимо выяснить, что же запускает врождённый иммунитет, к которому принадлежит альцгеймеровский пептид, в пожилом возрасте, и какие гены управляют этими процессами, — говорит Роберт Муар (Robert Moir), другой руководитель исследования. — Если удастся это установить, мы сможем разработать варианты предотвращения этой ненужной активации или даже научиться управлять ей» [4].

источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *